Calculating Basic Statistical Procedures in SPSS: A Self-Help and Practical Guide to Preparing Theses, Dissertations, and Manuscripts

By:
John R. Slate
Ana Rojas-LeBouef
Table of Contents

1 Introduction: Why a Book on Statistical Help for Graduate Students and Faculty? ... 1

2 Calculating Descriptive Statistics .. 5

3 Calculating a Nonparametric Pearson Chi-Square ... 25

4 Calculating Correlations: Parametric and Non Parametric .. 35

5 Conducting a Parametric Independent Samples t-test .. 55

6 Conducting a Parametric Dependent Samples t-test (Paired Samples t-test) .. 71

7 Conducting a Nonparametric Independent Samples t-test .. 85

8 Conducting a Nonparametric Paired Samples t-test ... 101

9 Conducting a Parametric One-Way Analysis of Variance .. 113

10 Conducting a Nonparametric One-Way Analysis of Variance .. 131

11 Standardized Skewness and Standardized Kurtosis Coefficient Calculator ... 149

12 Resources: Calculating Basic Statistics in SPSS ... 151

Attributions .. 153
Chapter 1

Introduction: Why a Book on Statistical Help for Graduate Students and Faculty?

NOTE: This Chapter has been peer-reviewed, accepted, and endorsed by the National Council of Professors of Educational Administration (NCPEA) as a significant contribution to the scholarship and practice of education administration. Formatted and edited in Connexions by Theodore Creighton and Brad Bizzell, Virginia Tech, Janet Tareilo, Stephen F. Austin State University, and Thomas Kersten, Roosevelt University.

This chapter is part of a larger Collection (Book) and is available at: Calculating Basic Statistical Procedures in SPSS: A Self-Help and Practical Guide to Preparing Theses, Dissertations, and Manuscripts

NOTE: Slate and LeBouef have written a "companion book" which is available at: Preparing and Presenting Your Statistical Findings: Model Write Ups

Authors Information

John R. Slate is a Professor at Sam Houston State University where he teaches Basic and Advanced Statistics courses, as well as professional writing, to doctoral students in Educational Leadership and Counseling. His research interests lie in the use of educational databases, both state and national, to reform school practices. To date, he has chaired and/or served over 100 doctoral student dissertation committees. Recently, Dr. Slate created a website, Writing and Statistical Help to assist students and faculty with both statistical assistance and in editing/writing their dissertations/theses and manuscripts.

1This content is available online at <http://cnx.org/content/m37280/1.2/>.
2http://my.qoop.com/store/NCPEA-Publications-1781472103076212/
3http://my.qoop.com/store/NCPEA-Publications-1781472103076212/
4http://cnx.org/content/m37280/latest/www.writingandstatisticalhelp.com
Ana Rojas-LeBouef is a Literacy Specialist at the Reading Center at Sam Houston State University where she teaches developmental reading courses. She recently completed her doctoral degree in Reading, where she conducted a 16-year analysis of Texas statewide data regarding the achievement gap. Her research interests lie in examining the inequities in achievement among ethnic groups. Dr. Rojas-LeBouef also assists students and faculty in their writing and statistical needs on the Writing and Statistical website, Writing and Statistical Help.

Editors Information

Theodore B. Creighton, is a Professor at Virginia Tech and the Publications Director for NCPEA Publications, the Founding Editor of Education Leadership Review, and the Senior Editor of the NCPEA Connexions Project.

Brad E. Bizzell, is a recent graduate of the Virginia Tech Doctoral Program in Educational Leadership and Policy Studies, and is a School Improvement Coordinator for the Virginia Tech Training and Technical Assistance Center. In addition, Dr. Bizzell serves as an Assistant Editor of the NCPEA Connexions Project in charge of technical formatting and design.

Janet Tareilo, is a Professor at Stephen F. Austin State University and serves as the Assistant Director of NCPEA Publications. Dr. Tareilo also serves as an Assistant Editor of the NCPEA Connexions Project and as an editor and reviewer for several national and international journals in educational leadership.

Thomas Kersten is a Professor at Roosevelt University in Chicago. Dr. Kersten is widely published and an experienced editor and is the author of Taking the Mystery Out of Illinois School Finance, a Connexions Print on Demand publication. He is also serving as Editor in Residence for this book by Slate and LeBouef.

1.1 Introduction: Why a Book for Helping Students and Faculty with SPSS and Writing Help?

In the past two decades of teaching basic and advanced statistical procedures, we have observed student after student who experienced difficulty with using the Statistical Package for the Social Sciences (SPSS) and with interpreting the voluminous output generated by SPSS. These difficulties, along with statistics anxiety experienced by many students, led us to develop a specific and detailed set of steps for students to follow. Students reported to us, over and over, how helpful the point-and-click steps were to them in allowing them to use SPSS. Some students, even with the steps, still managed to experience difficulty in being able to use SPSS successfully. As a result, we generated screenshots for every major point-and-click step. This combination of steps and screenshots has met with excellent student satisfaction and, most importantly for us as instructors, has enhanced their ability to be successful in using SPSS.

We have written this textbook in hopes of facilitating individuals’ success in using SPSS for their statistical analyses and in interpreting the SPSS output properly. Graduate and undergraduate students who take a statistics course in which SPSS is used will find these steps and screenshots to be very practical and very easy to follow. Doctoral students, who completed their statistics course years ago, but who are now working on their dissertation data analysis will find this textbook to be a practical step-by-guide. Finally, faculty members who engage in scholarly activities but are years removed from their own statistics courses will find this textbook to be helpful.

We hope that you find our materials helpful to you in your use of SPSS and in your interpretation of SPSS output. This textbook reflects our efforts and interests in making statistical analysis less threatening and less anxiety-producing than many persons find it to be. Currently, great emphasis is placed on accountability in
educational settings. Being able to analyze data, of which an abundance clearly exists, in an interpretable way is essential, especially if we want to make the educational lives of our students better.

John R. Slate, Sam Houston State University
Ana Rojas-LeBouef, Sam Houston State University
CHAPTER 1. INTRODUCTION: WHY A BOOK ON STATISTICAL HELP FOR GRADUATE STUDENTS AND FACULTY?
Chapter 2

Calculating Descriptive Statistics

NOTE: This Chapter has been peer-reviewed, accepted, and endorsed by the National Council of Professors of Educational Administration (NCPEA) as a significant contribution to the scholarship and practice of education administration. Formatted and edited in Connexions by Theodore Creighton and Brad Bizzell, Virginia Tech, Janet Tareilo, Stephen F. Austin State University, and Thomas Kersten, Roosevelt University.

2.1

This chapter is part of a larger Collection (Book) and is available at: Calculating Basic Statistical Procedures in SPSS: A Self-Help and Practical Guide to Preparing Theses, Dissertations, and Manuscripts

NOTE: Slate and LeBouef have written a "companion book" which is available at: Preparing and Presenting Your Statistical Findings: Model Write Ups

Authors Information

John R. Slate is a Professor at Sam Houston State University where he teaches Basic and Advanced Statistics courses, as well as professional writing, to doctoral students in Educational Leadership and Counseling. His research interests lie in the use of educational databases, both state and national, to reform school practices. To date, he has chaired and/or served over 100 doctoral student dissertation committees. Recently, Dr. Slate created a website, Writing and Statistical Help to assist students and faculty with both statistical assistance and in editing/writing their dissertations/theses and manuscripts.

Ana Rojas-LeBouef is a Literacy Specialist at the Reading Center at Sam Houston State University where she teaches developmental reading courses. She recently completed her doctoral degree in Reading, where she conducted a 16-year analysis of Texas statewide data regarding the achievement gap.

1This content is available online at <http://cnx.org/content/m37276/1.9/>.
2http://my.qoop.com/store/NCPEA-Publications-1781472103076212/
3http://my.qoop.com/store/NCPEA-Publications-1781472103076212/
4http://cnx.org/content/m37276/latest/www.writingandstatisticalhelp.com
Her research interests lie in examining the inequities in achievement among ethnic groups. Dr. Rojas-LeBouef also assists students and faculty in their writing and statistical needs on the Writing and Statistical website, Writing and Statistical Help.

Editors Information

Theodore B. Creighton, is a Professor at Virginia Tech and the Publications Director for NCPEA Publications, the Founding Editor of Education Leadership Review, and the Senior Editor of the NCPEA Connexions Project.

Brad E. Bizzell, is a recent graduate of the Virginia Tech Doctoral Program in Educational Leadership and Policy Studies, and is a School Improvement Coordinator for the Virginia Tech Training and Technical Assistance Center. In addition, Dr. Bizzell serves as an Assistant Editor of the NCPEA Connexions Project in charge of technical formatting and design.

Janet Tareilo, is a Professor at Stephen F. Austin State University and serves as the Assistant Director of NCPEA Publications. Dr. Tareilo also serves as an Assistant Editor of the NCPEA Connexions Project and as an editor and reviewer for several national and international journals in educational leadership.

Thomas Kersten is a Professor at Roosevelt University in Chicago. Dr. Kersten is widely published and an experienced editor and is the author of Taking the Mystery Out of Illinois School Finance, a Connexions Print on Demand publication. He is also serving as Editor in Residence for this book by Slate and LeBouef.

2.2 Calculating Descriptive Statistics

In this set of steps, readers are provided with directions on calculating basic measures of central tendency (i.e., mean, median, and mode), measures of dispersion (i.e., standard deviation, variance, and range), and measures of normality (i.e., skewness and kurtosis). For detailed information regarding the advantages and limitations of each of the measures cited, readers are referred to the Hyperstats Online Statistics Textbook at http://davidmlane.com/hyperstat/ or to the Electronic Statistics Textbook (2011) at http://www.statsoft.com/textbook/

Step One

First check the accuracy of your dataset.

√ Analyze
* Descriptive Statistics
* Frequencies
√ Move over the independent variable/s
√ Move over the dependent variable/s
√ OK

http://cnx.org/content/m37276/latest/figure1.3-thumb.png/image
* Uncheck the display "frequency tables" so that you are not provided with the frequencies of your data every time descriptive statistics are obtained.

Now check your output to see that the values for each of the variables is within the possible limits (e.g., 1 and 2 for gender). If your dataset is inaccurate, correct any inaccuracies before calculating any statistics.

To calculate descriptive statistics:

√ Analyze
* Descriptive Statistics
* Frequencies
* Move over the dependent variable/s
* Do NOT move over the independent variable/s or any string variables
* Statistics

\[http://cnx.org/content/m37276/latest/figure1.2.png/image \]
* Three basic measures of central tendency, upper right part of screen: mean, median, and mode.
* Three basic measures of variability, bottom left part of screen: variance, Standard Deviation, and range.
* Skewness [Note. Skewness refers to the extent to which the data are normally distributed around the mean. Skewed data involve having either mostly high scores with a few low ones or having mostly low scores with a few high ones.] Readers are referred to the following sources for a more detailed definition of skewness: http://www.statistics.com/index.php?page=glossary&term_id=356 and http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics
* Kurtosis [Note. Kurtosis also refers to the extent to which the data are normally distributed around the mean. This time, the data are piled up higher than normal around the mean or piled up higher than normal at the ends of the distribution.] Readers are referred to the following sources for a more detailed definition of kurtosis: http://www.statistics.com/index.php?page=glossary&term_id=326 and http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics

13 http://cnx.org/content/m37276/latest/figu 1.3.PNG/image
15 http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics
17 http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics
CHAPTER 2. CALCULATING DESCRIPTIVE STATISTICS

* Charts (optional, use only if you want a visual depiction of your data)
* Histograms (optional, use only if you want a visual depiction of your data) with normal curve

\[\text{http://cnx.org/content/m37276/latest/figure1.4.PNG/image} \]
* Uncheck the display frequency tables so that you are not provided with the frequencies of your data every time descriptive statistics are obtained.

* OK

http://cnx.org/content/m37276/latest/figure1.5.png/image
To obtain descriptive statistics for subgroups, do the following:
* Split File (icon middle top of screen next to the scales)
* Compare Groups
* Click on group (typically dichotomous in nature) and move to empty cell.

http://cnx.org/content/m37276/latest/figure1.7.png/image
CHAPTER 2. CALCULATING DESCRIPTIVE STATISTICS

OK

✓ Analyze
✓ Descriptive Statistics
✓ Frequencies
✓ Move over the dependent variable/s
✓ Do NOT move over the independent variable/s or any string variables

http://cnx.org/content/m37276/latest/figure1.8.png/image
Statistics

* Three basic measures of central tendency, upper right part of screen: mean, median, and mode.
* Three basic measures of variability, bottom left part of screen: variance, Standard Deviation, and range.
* Skewness [Note. Skewness refers to the extent to which the data are normally distributed around the mean. Skewed data involve having either mostly high scores with a few low ones or having mostly low scores with a few high ones.] Readers are referred to the following sources for a more detailed definition of skewness: http://www.statistics.com/index.php?page=glossary&term_id=356 and http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics

* Kurtosis [Note. Kurtosis also refers to the extent to which the data are normally distributed around the mean. This time, the data are piled up higher than normal around the mean or piled up higher than normal at the ends of the distribution.] Readers are referred to the following sources for a more detailed definition of kurtosis: http://www.statistics.com/index.php?page=glossary&term_id=326 and http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics

* Continue

23http://cnx.org/content/m37276/latest/figure1.9.PNG/image
25http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics
27http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics
* Charts (optional, use only if you want a visual depiction of your data)
* Histograms (optional, use only if you want a visual depiction of your data) with normal curve

![Image](http://cnx.org/content/m37276/latest/figure1.10.PNG/image)
To calculate a \(z \)-score for any continuous variable:

* OK

1. Analyze
2. Descriptive Statistics
3. Descriptives
4. Send variable on which you want \(z \)-scores to be calculated to empty cell
5. Check box for Save standardized values as variables

http://cnx.org/content/m37276/latest/figure1.11.png/image
* OK

You will be sent to the output window, as shown in Table 1. [Note. In some versions of SPSS, you will not be sent to the output window, but will remain in the data window.] The information in the output window is not relevant for your purposes. To see the variable that was just created, go to the SPSS data. The far right column should now be the new z-score variable that was created.

<table>
<thead>
<tr>
<th>Descriptive Statistics</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal IQ (Wechsler Verbal Intelligence 3)</td>
<td>1182</td>
<td>46</td>
<td>129</td>
<td>77.97</td>
<td>13.661</td>
</tr>
<tr>
<td>Valid N (listwise)</td>
<td>1182</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.1: Descriptive Statistics

A new variable/s will have been generated for you in the data window

To get this information in a usable output form, do the following:
√ Analyze
* Descriptive Statistics
* Frequencies

Move over the newly created z-score variable(s) (z-scores will generally appear at the bottom of your list with the words: “Zscore: Verbal IQ (Wechsler Verbal Intelligence 3)
* Make sure the frequencies box is checked
* OK

* Copy or cut the frequency table for this z-score variable and carry it into WORD. Delete any irrelevant information.

<table>
<thead>
<tr>
<th></th>
<th>Zscore: Verbal IQ (Wechsler Verbal Intelligence 3)</th>
<th>Zscore(wiviq) Verbal IQ (Wechsler Verbal Intelligence 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Valid</td>
<td>1182</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2.2: Z Scores

To calculate a T-score for any continuous variable:

1. **Analyze**
2. **Descriptive Statistics**
3. **Descriptives**
4. *Send variable on which you want T scores to be calculated to empty cell*
5. *Check box for Save standardized values as variables*

![Practice SPSS Database revised.ser [Dataset] - SPSS Statistics Data Editor](http://cnx.org/content/m37276/latest/figure1.13.PNG/image)
* OK
* You will be sent to the output window. Nothing in the output window is helpful. Go to the SPSS data screen by clicking on the data button bottom of screen. A new variable(s) will have been generated for you. This variable will be inserted into a formula so that you can have T scores.
* Variable view window

<table>
<thead>
<tr>
<th>Descriptive Statistics</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal IQ (Wechsler Verbal Intelligence 3)</td>
<td>1182</td>
<td>46</td>
<td>120</td>
<td>77.97</td>
<td>13.661</td>
</tr>
<tr>
<td>Valid N (listwise)</td>
<td>1182</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.3: Descriptive Statistics

√ Create a new variable for your T score variable
* Data view window
* Transform
* Compute Variable

* Name your target variable the name you just generated for your T score variable
* In the numeric expression window, type:
 * $50 + (10 \times \text{[name of the z-score variable generated by the computer earlier]})$

http://cnx.org/content/m37276/latest/figure1.14.png/image
<table>
<thead>
<tr>
<th>Xp</th>
<th>ZSc01</th>
<th>ZSc02</th>
<th>Std01</th>
<th>Std02</th>
<th>ZScZ01</th>
<th>ZScZ01</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>1.54412</td>
<td>-1.05208</td>
<td>1.61201</td>
<td>-1.05208</td>
<td>1.61201</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.97039</td>
<td>-1.05208</td>
<td>0.00242</td>
<td>-1.05208</td>
<td>0.00242</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.31451</td>
<td>-1.05208</td>
<td>0.22201</td>
<td>-1.05208</td>
<td>0.22201</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.86372</td>
<td>-1.05208</td>
<td>0.95401</td>
<td>-1.05208</td>
<td>0.95401</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.86372</td>
<td>-1.05208</td>
<td>0.95401</td>
<td>-1.05208</td>
<td>0.95401</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* OK

[33] http://cnx.org/content/m37276/latest/figure1.15.PNG/image
CHAPTER 2. CALCULATING DESCRIPTIVE STATISTICS

Respond yes to change existing variable

You may be sent to the output screen. Nothing there is helpful.

Go to data button and view your new T score variable.

*To get this information in a usable output form, do the following:

- **Analyze**
 - **Descriptive Statistics**
 - **Frequencies**

Move over the newly created T score variable

Make sure the frequencies box is checked.

[Table showing T scores]
2.3 Writing Up Your Statistics

So, how do you "write up" your Research Questions and your Results? Schuler W. Huck (2000) in his seminal book entitled, *Reading Statistics and Research*, points to the importance of your audience understanding and making sense of your research in written form. Huck further states:

2.3.1

This book is designed to help people decipher what researchers are trying to communicate in the written or oral summaries of their investigations. Here, the goal is simply to distill meaning from the words, symbols, tables, and figures included in the research report. To be competent in this arena, one must not only be able to decipher what’s presented but also to "fill in the holes"; this is the case because researchers typically...

http://cnx.org/content/m37276/latest/figure1.17.png/image
CHAPTER 2. CALCULATING DESCRIPTIVE STATISTICS

assume that those receiving the research report are familiar with unmentioned details of the research process and statistical treatment of data.

A Note from the Editors
Researchers and Professors John Slate and Ana Rojas-LeBouef understand this critical issue, so often neglected or not addressed by other authors and researchers. They point to the importance of doctoral students "writing up their statistics" in a way that others can understand your reporting and as importantly, interpret the meaning of your significant findings and implications for the preparation and practice of educational leadership. Slate and LeBouef provide you with a model for "writing up your descriptive statistics."

Click here to view: Writing Up Your Descriptive Statistics 36

2.4 References

http://cnx.org/content/col11299/latest/
http://davidmlane.com/hyperstat/
http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics
http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics
http://www.statsoft.com/textbook/
Chapter 3

Calculating a Nonparametric Pearson Chi-Square

NOTE: This chapter has been peer-reviewed, accepted, and endorsed by the National Council of Professors of Educational Administration (NCPEA) as a significant contribution to the scholarship and practice of education administration. Formatted and edited in Connexions by Theodore Creighton and Brad Bizzell, Virginia Tech, Janet Tareilo, Stephen F. Austin State University, and Thomas Kersten, Roosevelt University.

3.1

This chapter is part of a larger Collection (Book) and is available at: Calculating Basic Statistical Procedures in SPSS: A Self-Help and Practical Guide to Preparing Theses, Dissertations, and Manuscripts

NOTE: Slate and LeBouef have written a "companion book" which is available at: Preparing and Presenting Your Statistical Findings: Model Write Ups

Authors Information

John R. Slate is a Professor at Sam Houston State University where he teaches Basic and Advanced Statistics courses, as well as professional writing, to doctoral students in Educational Leadership and Counseling. His research interests lie in the use of educational databases, both state and national, to reform school practices. To date, he has chaired and/or served over 100 doctoral student dissertation committees. Recently, Dr. Slate created a website (Writing and Statistical Help) to assist students and faculty with both statistical assistance and in editing/writing their dissertations/theses and manuscripts.

1This content is available online at <http://cnx.org/content/m37277/1.5/>.
2http://my.qoop.com/store/NCPEA-Publications-1781472103076212/
3http://my.qoop.com/store/NCPEA-Publications-1781472103076212/
4http://cnx.org/content/m37277/latest/www.writingandstatisticalhelp
Ana Rojas-LeBouef is a Literacy Specialist at the Reading Center at Sam Houston State University where she teaches developmental reading courses. Dr. LeBouef recently completed her doctoral degree in Reading, where she conducted a 16-year analysis of Texas statewide data regarding the achievement gap. Her research interests lie in examining the inequities in achievement among ethnic groups. Dr. Rojas-LeBouef also assists students and faculty in their writing and statistical needs on the Writing and Statistical Help website.

3.2 Conducting a Nonparametric Pearson Chi-Square

In this set of steps, readers are provided with directions on calculating a statistical procedure in which the independent variable and the dependent variable are categorical variables. As such, the only descriptive statistics that can be obtained are frequencies, percentages, and sums. Because the data on which this chi-square procedure is used are grouped data, skewness and kurtosis values are not appropriate. Readers should ensure that the assumptions described in the steps below are met prior to conducting this nonparametric procedure. For more detailed information about the statistical and conceptual underpinnings of this statistical technique, readers are referred to the Hyperstats Online Statistics Textbook at http://davidmlane.com/hyperstat/chi_square.html or to the Electronic Statistics Textbook (2011) at http://www.statsoft.com/textbook/basic-statistics/

3.2.1 Step One:

Check to make sure that both variables are categorical in nature. That is, the variables must have values that are in a restricted range (e.g., 1 or 2 for gender; 1-5 for Strongly Agree through Strongly Disagree; 1-5 for ethnicity categories).

3.2.2 Step Two:

Check to verify that you have available per cell at least 5 responses (i.e., divide the sample size by the number of cells [number of categories for the IV times the number of categories for the DV] and have a value of atleast 5.

5http://www.ncpeapublications.org
6http://ncpeapublications.org/about-elr.html
7http://cnx.org/content/col10606/latest/
8http://davidmlane.com/hyperstat/chi_square.html
9http://www.statsoft.com/textbook/basic-statistics/
least 5).

3.2.3 Step Three:
Verify that only one response per participant is present. Once these assumptions have been checked and validated, then the Pearson chi-square procedure can be calculated.

3.2.4 Step Four:
✓ Analyze
* Descriptive Statistics
* Crosstabs
CHAPTER 3. CALCULATING A NONPARAMETRIC PEARSON CHI-SQUARE

![SPSS Database](https://cnx.org/content/m37277/latest/figure2.1.png)

<table>
<thead>
<tr>
<th>Group</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.34848</td>
<td>-1.05208</td>
<td>1.46541</td>
</tr>
<tr>
<td>20</td>
<td>1.46830</td>
<td>-1.05208</td>
<td>1.53986</td>
</tr>
<tr>
<td>21</td>
<td>1.34848</td>
<td>-1.05208</td>
<td>1.46541</td>
</tr>
<tr>
<td>22</td>
<td>0.06936</td>
<td>-1.05208</td>
<td>1.10041</td>
</tr>
<tr>
<td>23</td>
<td>-1.3057</td>
<td>-1.05208</td>
<td>-0.50318</td>
</tr>
<tr>
<td>24</td>
<td>0.76154</td>
<td>-1.05208</td>
<td>1.02721</td>
</tr>
<tr>
<td>25</td>
<td>2.56444</td>
<td>-1.05208</td>
<td>1.46168</td>
</tr>
<tr>
<td>26</td>
<td>-0.03033</td>
<td>-1.05208</td>
<td>-0.14369</td>
</tr>
<tr>
<td>27</td>
<td>1.84194</td>
<td>-1.05208</td>
<td>1.68801</td>
</tr>
<tr>
<td>28</td>
<td>-0.11607</td>
<td>-1.05208</td>
<td>0.36941</td>
</tr>
<tr>
<td>29</td>
<td>-0.00363</td>
<td>-1.05208</td>
<td>-0.14369</td>
</tr>
<tr>
<td>30</td>
<td>-0.51016</td>
<td>-1.05208</td>
<td>0.07561</td>
</tr>
<tr>
<td>31</td>
<td>-0.21689</td>
<td>-1.05208</td>
<td>0.29521</td>
</tr>
<tr>
<td>32</td>
<td>0.27242</td>
<td>-1.05208</td>
<td>0.66121</td>
</tr>
<tr>
<td>33</td>
<td>-0.41234</td>
<td>-1.05208</td>
<td>0.14861</td>
</tr>
<tr>
<td>34</td>
<td>-0.11887</td>
<td>-1.05208</td>
<td>0.36941</td>
</tr>
</tbody>
</table>

[10http://cnx.org/content/m37277/latest/figure2.1.png]
√ Independent Variable (e.g., gender) in Row
√ Dependent Variable (e.g., responses to a survey item) in Column

![Cross-tabulation](http://cnx.org/content/m37277/latest/figure2_2.png/image)

√ Cells
√ In the Percentages Box
√ Row

^11^ http://cnx.org/content/m37277/latest/figure2_2.png/image
CHAPTER 3. CALCULATING A NONPARAMETRIC PEARSON
CHI-SQUARE

✓ Continue
✓ Statistics
✓ Chi Square
✓ Phi and Cramer’s V

12http://cnx.org/content/m37277/latest/figure2.3.PNG/image
3.2.5 Step Five:

Check for Statistical Significance
1. Go to the Chi-Square Test Box
2. Find Pearson Chi-Square row and Asymp. Sig. (2-sided) column cell

http://cnx.org/content/m37277/latest/figure2.4.PNG/image
Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymp.Sig.(2-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>833.549a</td>
<td>118</td>
<td>.000</td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>907.609</td>
<td>118</td>
<td>.000</td>
</tr>
<tr>
<td>Linear-by-Linear</td>
<td>16.845</td>
<td>1</td>
<td>.000</td>
</tr>
<tr>
<td>Association</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>1182</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.1

a. 81 cells (45.0%) have expected count less than 5. The minimum expected count is .23.

3.3 Step Six:

Check Effect Size
1. Go to the Symmetric Measures Box
2. Find the Nominal by Nominal Cramer’s V row and Value column cell
3. The effect size is there and must be related to Cohen (1998)

Small effect size = .10 (range of .10 to .299)
Medium effect size = .30 (range of .30 to .499)
Large effect size = .50 (range of .50 to 1.00)

NOTE: Cramer’s V cannot be greater than 1.00

Symmetric Measures

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Approx Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal by Phi</td>
<td>.840</td>
<td>.000</td>
</tr>
<tr>
<td>Nominal Cramer’s V</td>
<td>.94</td>
<td>.000</td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>1182</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.2

3.4 Step Seven:

Numerical Sentence
1. \(X^2(df)_{sp} = sp, Pearson \text{ Chi-Square}/Value \text{ Cell}_{sp} p_{sp} < sp, .001 \)
2. \(X^2(1) = 833.55, p < .001 \)

[Note. The sp refers to a space being present where the sp is located.]

3.5 Step Eight:

1. Go to the IV by DV table (i.e., the one above the Chi-Square Tests table)
2. Examine the percentages to determine where the statistically significant differences are
3.6 Step Nine:

Narrative and Interpretation Outline
1. Let the reader know what statistical procedure was conducted.
2. Explain how the assumptions for this statistical procedure were met.
3. Report the results from the test
4. Interpret the findings

3.7 Writing Up Your Statistics

So, how do you "write up" your Research Questions and your Results? Schuler W. Huck (2000) in his seminal book entitled, *Reading Statistics and Research*, points to the importance of your audience understanding and making sense of your research in written form. Huck further states:

3.7.1

This book is designed to help people *decipher* what researchers are trying to communicate in the written or oral summaries of their investigations. Here, the goal is simply to distill meaning from the words, symbols, tables, and figures included in the research report. To be competent in this arena, one must not only be able to decipher what’s presented but also to "fill in the holes"; this is the case because researchers typically assume that those receiving the research report are familiar with unmentioned details of the research process and statistical treatment of data.

A Note from the Editors

Researchers and Professors John Slate and Ana Rojas-LeBouef understand this critical issue, so often neglected or not addressed by other authors and researchers. They point to the importance of doctoral students "writing up their statistics" in a way that others can understand your reporting and as importantly, interpret the meaning of your significant findings and implications for the preparation and practice of educational leadership. Slate and LeBouef provide you with a model for "writing up your Chi-square statistics."

Click here to view: *Writing Up Your Chi-square Statistics* 14

3.8 References

14http://cnx.org/content/col11299/latest/
15http://davidmlane.com/hyperstat/
17http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statisticsb
19http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statisticsb
20http://www.statsoft.com/textbook/
CHAPTER 3. CALCULATING A NONPARAMETRIC PEARSON CHI-SQUARE
Chapter 4

Calculating Correlations: Parametric and Non Parametric

NOTE: This Chapter has been peer-reviewed, accepted, and endorsed by the National Council of Professors of Educational Administration (NCPEA) as a significant contribution to the scholarship and practice of education administration. Formatted and edited in Connexions by Theodore Creighton and Brad Bizzell, Virginia Tech, Janet Tareilo, Stephen F. Austin State University, and Thomas Kersten, Roosevelt University.

4.1

This chapter is part of a larger Collection (Book) and is available at: Calculating Basic Statistical Procedures in SPSS: A Self-Help and Practical Guide to Preparing Theses, Dissertations, and Manuscripts

NOTE: Slate and LeBouef have written a "companion book" which is available at: Preparing and Presenting Your Statistical Findings: Model Write Ups

Authors Information

John R. Slate is a Professor at Sam Houston State University where he teaches Basic and Advanced Statistics courses, as well as professional writing, to doctoral students in Educational Leadership and Counseling. His research interests lie in the use of educational databases, both state and national, to reform school practices. To date, he has chaired and/or served over 100 doctoral student dissertation committees. Recently, Dr. Slate created a website Writing and Statistical Help to assist students and faculty with both statistical assistance and in editing/writing their dissertations/theses and manuscripts.

1This content is available online at <http://cnx.org/content/m37278/1.7/>.
2http://my.qoop.com/store/NCPEA-Publications-1781472103076212/
3http://my.qoop.com/store/NCPEA-Publications-1781472103076212/
4http://www.writingandstatisticalhelp.com

35
4.2 Calculating Correlations: Parametric and Nonparametric

In this set of steps, readers will calculate either a parametric or a nonparametric statistical analysis, depending on whether the data reflect a normal distribution. A parametric statistical procedure requires that its data be reflective of a normal curve whereas no such assumption is made in the use of a nonparametric procedure. Of the two types of statistical analyses, the parametric procedure is the more powerful one in ascertaining whether or not a statistically significant relationship, in this case, exists. As such, parametric procedures are preferred over nonparametric procedures. When data are not normally distributed, however, parametric analyses may provide misleading and inaccurate results. Accordingly, nonparametric analyses should be used in cases where data are not reflective of a normal curve. In this set of steps, readers are provided with information on how to make the determination of normally or nonnormally distributed data. For detailed information regarding the assumptions underlying parametric and nonparametric procedures, readers are referred to the Hyperstats Online Statistics Textbook at http://davidmlane.com/hyperstat/ or to the Electronic Statistics Textbook (2011) at http://www.statsoft.com/textbook/

Research questions for which correlations are appropriate involve asking for relationships between or among variables. The research question, “What is the relationship between study skills and grades for high school students?” could be answered through use of a correlation.

4.2.1 Step One:
Perform ScatterPlots

http://www.writingandstatisticalhelp.com
http://www.ncpeapublications.org
http://ncpeapublications.org/about-elr.html
http://cnx.org/content/col10606/latest/
http://davidmlane.com/hyperstat/
http://www.statsoft.com/textbook/
√ Graphs
√ Legacy Dialogs
√ Scatter/Dot
√ The Simple Scatter icon should be highlighted
CHAPTER 4. CALCULATING CORRELATIONS: PARAMETRIC AND NON-PARAMETRIC

Data View

<table>
<thead>
<tr>
<th>group</th>
<th>id</th>
<th>group</th>
<th>id</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>654</td>
<td>1</td>
<td>654</td>
</tr>
<tr>
<td>2</td>
<td>733</td>
<td>2</td>
<td>733</td>
</tr>
<tr>
<td>3</td>
<td>734</td>
<td>3</td>
<td>734</td>
</tr>
<tr>
<td>4</td>
<td>735</td>
<td>4</td>
<td>735</td>
</tr>
<tr>
<td>5</td>
<td>736</td>
<td>5</td>
<td>736</td>
</tr>
<tr>
<td>6</td>
<td>654</td>
<td>6</td>
<td>654</td>
</tr>
<tr>
<td>7</td>
<td>733</td>
<td>7</td>
<td>733</td>
</tr>
<tr>
<td>8</td>
<td>734</td>
<td>8</td>
<td>734</td>
</tr>
<tr>
<td>9</td>
<td>735</td>
<td>9</td>
<td>735</td>
</tr>
<tr>
<td>10</td>
<td>736</td>
<td>10</td>
<td>736</td>
</tr>
<tr>
<td>11</td>
<td>40</td>
<td>11</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>614</td>
<td>13</td>
<td>614</td>
</tr>
<tr>
<td>14</td>
<td>624</td>
<td>14</td>
<td>624</td>
</tr>
<tr>
<td>15</td>
<td>628</td>
<td>15</td>
<td>628</td>
</tr>
<tr>
<td>16</td>
<td>635</td>
<td>16</td>
<td>635</td>
</tr>
<tr>
<td>17</td>
<td>664</td>
<td>17</td>
<td>664</td>
</tr>
<tr>
<td>18</td>
<td>614</td>
<td>18</td>
<td>614</td>
</tr>
<tr>
<td>19</td>
<td>624</td>
<td>19</td>
<td>624</td>
</tr>
<tr>
<td>20</td>
<td>628</td>
<td>20</td>
<td>628</td>
</tr>
<tr>
<td>21</td>
<td>635</td>
<td>21</td>
<td>635</td>
</tr>
<tr>
<td>22</td>
<td>664</td>
<td>22</td>
<td>664</td>
</tr>
<tr>
<td>23</td>
<td>522</td>
<td>23</td>
<td>522</td>
</tr>
<tr>
<td>24</td>
<td>524</td>
<td>24</td>
<td>524</td>
</tr>
<tr>
<td>25</td>
<td>619</td>
<td>25</td>
<td>619</td>
</tr>
<tr>
<td>26</td>
<td>123</td>
<td>26</td>
<td>123</td>
</tr>
<tr>
<td>27</td>
<td>278</td>
<td>27</td>
<td>278</td>
</tr>
<tr>
<td>28</td>
<td>599</td>
<td>28</td>
<td>599</td>
</tr>
<tr>
<td>29</td>
<td>602</td>
<td>29</td>
<td>602</td>
</tr>
<tr>
<td>30</td>
<td>618</td>
<td>30</td>
<td>618</td>
</tr>
<tr>
<td>31</td>
<td>626</td>
<td>31</td>
<td>626</td>
</tr>
<tr>
<td>32</td>
<td>629</td>
<td>32</td>
<td>629</td>
</tr>
<tr>
<td>33</td>
<td>647</td>
<td>33</td>
<td>647</td>
</tr>
<tr>
<td>34</td>
<td>653</td>
<td>34</td>
<td>653</td>
</tr>
</tbody>
</table>

[11]https://cnx.org/content/m37278/latest/figure3_1.png/image
√ Define
√ Drag one of the two variables of interest to the first box (Y axis) on the right hand side and the other variable of interest to the second box (X axis) on the right hand side. It does not matter which variable goes in the X or Y axis because your scatterplot results will be the same.

Once you have a variable in each of the two boxes, click on the OK tab on the bottom left hand corner of the screen.

Look at the scatterplots to see whether a linear relationship is present.
In the screenshot below, the relationship is very clearly linear.

http://cnx.org/content/m37278/latest/figure3.2.PNG/image
CHAPTER 4. CALCULATING CORRELATIONS: PARAMETRIC AND NON PARAMETRIC

4.2.2 Step Two:

Calculate Descriptive Statistics on Variables

√ Analyze
* Descriptive Statistics
* Frequencies
* Click on the variables for which you want descriptive statistics (your dependent variables)
* You may click on each variable separately or highlight several of them

http://cnx.org/content/m37278/latest/figure3.3.png
Once you have a variable in the left hand cell highlighted, click on the arrow in the middle to send the variable to the empty cell titled Variable(s).

√ Statistics
* Click on as many of the options you would like to see results
* At the minimum, click on: M, SD, Skewness, and Kurtosis

14 http://cnx.org/content/m37278/latest/figure3.4.png/image
* Continue

* Charts (these are calculated only if you wish to have visual depictions of skewness and of kurtosis—they are not required)

* Histograms (not required, optional) with Normal Curve

\[\text{http://cnx.org/content/m37278/latest/figure3.5.PNG/image}\]
<table>
<thead>
<tr>
<th>age</th>
<th>recordage</th>
<th>wfeiq</th>
<th>wviq</th>
<th>wpiq</th>
<th>pc</th>
<th>inf</th>
<th>ccd</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>.</td>
<td>93</td>
<td>100</td>
<td>98</td>
<td>6</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>82</td>
<td>78</td>
<td>90</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>82</td>
<td>81</td>
<td>89</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>90</td>
<td>91</td>
<td>90</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>81</td>
<td>73</td>
<td>67</td>
<td>9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>93</td>
<td>100</td>
<td>86</td>
<td>6</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>82</td>
<td>73</td>
<td>90</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>89</td>
<td>91</td>
<td>90</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>91</td>
<td>91</td>
<td>90</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>81</td>
<td>73</td>
<td>91</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

* Continue
* OK

[http://cnx.org/content/m37278/latest/figure3.6.png/image]
4.2.3 Step Three:

Check for Skewness and Kurtosis values falling within/without the parameters of normality (-3 to +3)

* Skewness [Note. Skewness refers to the extent to which the data are normally distributed around the mean. Skewed data involve having either mostly high scores with a few low ones or having mostly low scores with a few high ones.] Readers are referred to the following sources for a more detailed definition of skewness: http://www.statistics.com/index.php?page=glossary&term_id=356 and http://www.statsoft.com/textbook/basic-statistics/#Descriptive

To standardize the skewness value so that its value can be constant across datasets and across studies, the following calculation must be made: Take the skewness value from the SPSS output (in this case it is -1.177) and divide it by the Std. error of skewness (in this case it is .071). If the resulting calculation is within -3 to +3, then the skewness of the dataset is within the range of normality (Onwuegbuzie & Daniel, 2002). If the resulting calculation is outside of this +/-3 range, the dataset is not normally distributed.

* Kurtosis [Note. Kurtosis also refers to the extent to which the data are normally distributed around the mean. This time, the data are piled up higher than normal around the mean or piled up higher than normal at the ends of the distribution.] Readers are referred to the following sources for a more detailed definition of kurtosis: http://www.statistics.com/index.php?page=glossary&term_id=326 and http://www.statsoft.com/textbook/basic-statistics/#Descriptive
To standardize the kurtosis value so that its value can be constant across datasets and across studies, the following calculation must be made: Take the kurtosis value from the SPSS output (in this case it is .072) and divide it by the Std. error of kurtosis (in this case it is .142). If the resulting calculation is within -3 to +3, then the kurtosis of the dataset is within the range of normality (Onuegbuzie & Daniel, 2002). If the resulting calculation is outside of this +/-3 range, the dataset is not normally distributed.

Performance IQ (Wechsler Performance Intelligence 3)

<table>
<thead>
<tr>
<th>Statistics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance IQ (Wechsler Performance Intelligence 3)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
</tr>
<tr>
<td>Std. Deviation</td>
<td></td>
</tr>
<tr>
<td>Skewness</td>
<td></td>
</tr>
<tr>
<td>Std. Error of Skewness</td>
<td></td>
</tr>
<tr>
<td>Kurtosis</td>
<td></td>
</tr>
<tr>
<td>Std. Error of Kurtosis</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1

Standardized Coefficients Calculator
Copy variable #1 and #2 into the skewness and kurtosis calculator

21http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics
CHAPTER 4. CALCULATING CORRELATIONS: PARAMETRIC AND NON PARAMETRIC

Copy of Skewness_Kurtosis_Calculator [Read-Only] [Compatibility Mode]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Students with learning disabilities</td>
<td>Variable #1</td>
<td>Variable #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Skewness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Std. Error of Skewness</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Kurtosis</td>
<td>Variable #1</td>
<td>Variable #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Std. Error of Kurtosis</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Students with Mental Retardation</td>
<td>Variable #1</td>
<td>Variable #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Skewness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Std. Error of Skewness</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Students who did not qualify</td>
<td>Variable #1</td>
<td>Variable #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Skewness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Std. Error of Skewness</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Kurtosis</td>
<td>Variable #1</td>
<td>Variable #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Std. Error of Kurtosis</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copy and paste output chart into an Excel File. You can then copy and paste the coefficients into.
4.2.4 Step Four:

Calculate a Correlation Procedure on the Data
√ Analyze
√ Correlate
√ Bivariate
CHAPTER 4. CALCULATING CORRELATIONS: PARAMETRIC AND NON-PARAMETRIC

![SPSS Data Editor](http://cnx.org/content/m37278/latest/figure3.9.PNG/image)
Send Over Variables on which you want to calculate a correlation by clicking on the variables in the left hand cell and then clicking on the middle arrow to send them to the right hand cell.

Perform a Pearson r if the standardized skewness coefficients and standardized kurtosis coefficients are within normal limits—the Pearson r is the default.

Calculate a Spearman rho if the standardized skewness coefficients and standardized kurtosis coefficients are outside of the normal limits of $+/−3$

To calculate a Spearman rho, click on the Spearman button and unclick the Pearson r

Use the default two-tailed test of significance

Use the Flag significant Correlation

OK

4.2.5 Step Five:

Check for Statistical Significance

1. Go to the correlation box
2. Follow Sig. (2-tailed) row over to chosen variable column
3. If you have any value less than .05 or less than your Bonferroni adjustment, if you are calculating multiple correlations on the same sample in the same study, then you have statistical significance.

http://cnx.org/content/m37278/latest/figure3.10.PNG/image
Correlations
Table 4.2

<table>
<thead>
<tr>
<th></th>
<th>Verbal IQ (Wechsler Verbal Intelligence 3)</th>
<th>Performance IQ (Wechsler Performance Intelligence 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal IQ (Wechsler Verbal Intelligence 3)</td>
<td>Pearson Correlation 1</td>
<td>.664**</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>1182</td>
</tr>
<tr>
<td>Performance IQ (Wechsler Performance Intelligence 3)</td>
<td>Pearson Correlation .664**</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>1180</td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (2-tailed).

NOTE: [In this matrix, it appears that four unique correlations are present, one per cell. In fact, only one unique correlation, or r, is present in this four cell matrix.]

4.2.6 Step Six:

Check For Effect Size
1. Go to the correlation box
2. Find Pearson’s Correlation Row or Spearman rho’s and follow it to the variable column.
3. Your effect size will be located in the cell where the above intersect.
4. The effect size is calculated as:

4.2.6.1 Cohen’s criteria for correlations (1998)

.1 = small (range from .1 to .29)
.3 = moderate (range from .3 to .49)
.5 = large (range from .5 to 1.0)

NOTE: Correlations cannot be greater than 1.00, therefore a 0 should not be placed in front of the decimal.

4.2.7 Step Seven:

Check the Level of Variance the Variables Have in Common
1. Square the Pearson Correlation Value or Spearman rho value to find the variance
2. In this example, the Verbal IQ and the Performance IQ share 44.09% of the variance in common (see correlation value of .664).

Correlations
CHAPTER 4. CALCULATING CORRELATIONS: PARAMETRIC AND NON PARAMETRIC

<table>
<thead>
<tr>
<th></th>
<th>Verbal IQ (Wechsler Verbal Intelligence 3)</th>
<th>Performance IQ (Wechsler Performance Intelligence 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal IQ (Wechsler Verbal Intelligence 3)</td>
<td>Pearson Correlation</td>
<td>(.664^{**})</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>(.000)</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>1182</td>
</tr>
<tr>
<td>Performance IQ (Wechsler Performance Intelligence 3)</td>
<td>Pearson Correlation</td>
<td>(.664^{**})</td>
</tr>
<tr>
<td></td>
<td>Sig. (2-tailed)</td>
<td>(.000)</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>1180</td>
</tr>
</tbody>
</table>

** Correlation is significant at the 0.01 level (2-tailed).

Table 4.3

4.2.8 Step Eight:

Write the Numerical Sentence
1. \(r(n_{sp}) = r_{sp}\), correlation coefficient, \(\text{sp} \leq \text{sp}_{0.01}\) (or Bonferroni-adjusted alpha significance error rate).
2. Using this example: \(r(1180) = .66, p < .001\)

NOTE: [sp means to insert a space.] Remember that all mathematical symbols are placed in italics.

4.2.9 Step Nine:

Narrative and Interpretation
1. \(r\) value
2. sample size or \(n\)
3. \(p\) value
4. \(r^2\) value
5. \(r(1180) = .66, p < .001, 44.09\% \) of variance accounted for.
6. Note that the \(r\) value itself is the effect size.

4.3 Writing Up Your Statistics

So, how do you "write up" your Research Questions and your Results? Schuler W. Huck (2000) in his seminal book entitled, *Reading Statistics and Research*, points to the importance of your audience understanding and making sense of your research in written form. Huck further states:

4.3.1

This book is designed to help people *decipher* what researchers are trying to communicate in the written or oral summaries of their investigations. Here, the goal is simply to distill meaning from the words, symbols, tables, and figures included in the research report. To be competent in this arena, one must not only be able to decipher what’s presented but also to "fill in the holes"; this is the case because researchers typically assume that those receiving the research report are familiar with unmentioned details of the research process and statistical treatment of data.
Writing Up Your Correlations

Researchers and Professors John Slate and Ana Rojas-LeBouef understand this critical issue, so often neglected or not addressed by other authors and researchers. They point to the importance of doctoral students "writing up their statistics" in a way that others can understand your reporting and as importantly, interpret the meaning of your significant findings and implications for the preparation and practice of educational leadership. Slate and LeBouef provide you with a model for "writing up your Parametric and Non-Parametric Correlations statistics."

Click here to view: Writing Up Your Parametric Correlation Statistics

Click here to view: Writing Up Your Nonparametric Correlation Statistics

4.4 References

CHAPTER 4. CALCULATING CORRELATIONS: PARAMETRIC AND NON-PARAMETRIC
Chapter 5

Conducting a Parametric Independent Samples t-test

NOTE: This chapter has been peer-reviewed, accepted, and endorsed by the National Council of Professors of Educational Administration (NCPEA) as a significant contribution to the scholarship and practice of education administration. Formatted and edited in Connexions by Theodore Creighton and Brad Bizzell, Virginia Tech, Janet Tareilo, Stephen F. Austin State University, and Thomas Kersten, Roosevelt University.

5.1

This chapter is part of a larger Collection (Book) and is available at: Calculating Basic Statistical Procedures in SPSS: A Self-Help and Practical Guide to Preparing Theses, Dissertations, and Manuscripts

NOTE: Slate and LeBouef have written a "companion book" which is available at: Preparing and Presenting Your Statistical Findings: Model Write Ups

Authors Information

John R. Slate is a Professor at Sam Houston State University where he teaches Basic and Advanced Statistics courses, as well as professional writing, to doctoral students in Educational Leadership and Counseling. His research interests lie in the use of educational databases, both state and national, to reform school practices. To date, he has chaired and/or served over 100 doctoral student dissertation committees. Recently, Dr. Slate created a website Writing and Statistical Help to assist students and faculty with both statistical assistance and in editing/writing their dissertations/theses and manuscripts.

1This content is available online at <http://cnx.org/content/m37279/1.5/>.
2http://my.qoop.com/store/NCPEA-Publications-1781472103076212/
3http://my.qoop.com/store/NCPEA-Publications-1781472103076212/
4http://www.writingandstatisticalhelp.com
Ana Rojas-LeBouef is a Literacy Specialist at the Reading Center at Sam Houston State University where she teaches developmental reading courses. She recently completed her doctoral degree in Reading, where she conducted a 16-year analysis of Texas statewide data regarding the achievement gap. Her research interests lie in examining the inequities in achievement among ethnic groups. Dr. Rojas-LeBouef also assists students and faculty in their writing and statistical needs on the website Writing and Statistical Help.5

Editors Information

Theodore B. Creighton, is a Professor at Virginia Tech and the Publications Director for NCPEA Publications6, the Founding Editor of Education Leadership Review,7 and the Senior Editor of the NCPEA Connexions Project.

Brad E. Bizzell, is a recent graduate of the Virginia Tech Doctoral Program in Educational Leadership and Policy Studies, and is a School Improvement Coordinator for the Virginia Tech Training and Technical Assistance Center. In addition, Dr. Bizzell serves as an Assistant Editor of the NCPEA Connexions Project in charge of technical formatting and design.

Janet Tareilo, is a Professor at Stephen F. Austin State University and serves as the Assistant Director of NCPEA Publications. Dr. Tareilo also serves as an Assistant Editor of the NCPEA Connexions Project and as an editor and reviewer for several national and international journals in educational leadership.

Thomas Kersten is a Professor at Roosevelt University in Chicago. Dr. Kersten is widely published and an experienced editor and is the author of Taking the Mystery Out of Illinois School Finance8, a Connexions Print on Demand publication. He is also serving as Editor in Residence for this book by Slate and LeBouef.

5.2 Conducting a Parametric Independent Samples t-test

In this set of steps, readers will calculate either a parametric or a nonparametric statistical analysis, depending on whether the data for the dependent variable reflect a normal distribution. A parametric statistical procedure requires that its data be reflective of a normal curve whereas no such assumption is made in the use of a nonparametric procedure. Of the two types of statistical analyses, the parametric procedure is the more powerful one in ascertaining whether or not a statistically significant difference, in this case, exists. As such, parametric procedures are preferred over nonparametric procedures. When data are not normally distributed, however, parametric analyses may provide misleading and inaccurate results. According, nonparametric analyses should be used in cases where data are not reflective of a normal curve. In this set of steps, readers are provided with information on how to make the determination of normally or nonnormally distributed data.

For this parametric independent samples t-test to be appropriately used, at least half of the standardized skewness coefficients and the standardized kurtosis coefficients must be within the normal range (+/-3, Onwuegbuzie & Daniel, 2002). Research questions for which independent samples t-tests are appropriate involve asking for differences in a dependent variable by group membership (i.e., only two groups are present for t-tests). The research question, “What is the difference between boys and girls in their science performance among middle school students?” could be answered through use of an independent samples t-test.

5 http://www.writingandstatisticalhelp.com
6 http://www.ncpeapublications.org
7 http://ncpeapublications.org/about-elr.html
8 http://cnx.org/content/col10666/latest/
9 http://davidmlane.com/hyperstat/
10 http://www.statsoft.com/textbook/
5.2.1 Step One

Calculate Frequencies on the Split Groups

√ Data
* Split File

Your screen will show that all cases are going to be analyzed and a “do not create groups”. You will need to click the compare groups and move the independent variable over to the “Group Based on”. In the case of a t-test, the grouping variable or independent variable will consist of two groups.

11http://cnx.org/content/m37279/latest/figure4.1.PNG/image
CHAPTER 5. CONDUCTING A PARAMETRIC INDEPENDENT SAMPLES T-TEST

After you do this, your screen should resemble the following:

http://cnx.org/content/m37279/latest/figure4.2.PNG/image
* Then click OK

√ Analyze
* Descriptive Statistics
* Frequencies

^13http://cnx.org/content/m37279/latest/figure4.3.png/image
CHAPTER 5. CONDUCTING A PARAMETRIC INDEPENDENT SAMPLES T-TEST

√ Move over the dependent (outcome) variable

14 http://cnx.org/content/m37279/latest/figure4.4.png/image
Statistics

* Mean

* Standard Deviation

* Skewness [Note. Skewness refers to the extent to which the data are normally distributed around the mean. Skewed data involve having either mostly high scores with a few low ones or having mostly low scores with a few high ones.] Readers are referred to the following sources for a more detailed definition of skewness: http://www.statistics.com/index.php?page=glossary&term_id=356 and http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics

To standardize the skewness value so that its value can be constant across datasets and across studies, the following calculation must be made: Take the skewness value from the SPSS output and divide it by the Std. error of skewness. If the resulting calculation is within -3 to +3, then the skewness of the dataset is within the range of normality (Onwuegbuzie & Daniel, 2002). If the resulting calculation is outside of this +/-3 range, the dataset is not normally distributed.

* Kurtosis [Note. Kurtosis also refers to the extent to which the data are normally distributed around the mean. This time, the data are piled up higher than normal around the mean or piled up higher than normal at the ends of the distribution.] Readers are referred to the following sources for a more detailed definition of kurtosis: http://www.statistics.com/index.php?page=glossary&term_id=326 and http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics

To standardize the kurtosis value so that its value can be constant across datasets and across studies, the following calculation must be made: Take the kurtosis value from the SPSS output and divide it by the Std. error of kurtosis. If the resulting calculation is within -3 to +3, then the kurtosis of the dataset is

17 http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics
19 http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics
is within the range of normality (Onwuegbuzie & Daniel, 2002). If the resulting calculation is outside of this +/-3 range, the dataset is not normally distributed.

* Continue
* OK

<table>
<thead>
<tr>
<th>CAMPUS</th>
<th>CHOOSC03R</th>
<th>CHOOSC03R</th>
<th>CHOOSC03R</th>
<th>C0LCHART</th>
<th>var</th>
<th>var</th>
<th>var</th>
<th>var</th>
<th>var</th>
<th>var</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1902001</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1902001</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1902003</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>90 N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1903001</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1903004</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1903001</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>90 N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1904001</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1904001</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1904002</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1905002</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1906002</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1907001</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1907004</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1908001</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1908002</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1908001</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1909001</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1909001</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1909001</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2001002</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2001004</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2001001</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2001005</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3001001</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3002001</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>3002004</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

√ Charts (these are calculated only if you wish to have visual depictions of skewness and of kurtosis—they are not required)
* Histogram ~ with normal curve (not required, optional)
√ Continue
√ OK

http://cnx.org/content/m37279/latest/figure4.6.png/image
NOTE: Before you continue to another application you must complete the following:

√ Data
√ Split Files
√ Analyze all cases, do not create groups
√ OK

21http://cnx.org/content/m37279/latest/figure4.7.PNG/image
5.3

5.3.1 Step Two

Check for Skewness and Kurtosis values falling within/without the parameters of normality (-3 to +3). Note that each variable below has its own skewness and its own kurtosis values. Thus, a total of three standardized skewness coefficients and three standardized kurtosis coefficients can be calculated from information in the table below.

<table>
<thead>
<tr>
<th></th>
<th>CH005TC09R</th>
<th>CL005TC09R</th>
<th>CW005TC09R</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Valid</td>
<td>3125</td>
<td>1805</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
<td>5197</td>
<td>6517</td>
</tr>
</tbody>
</table>

continued on next page
Table 5.1: Skewness and Kurtosis Coefficients

<table>
<thead>
<tr>
<th></th>
<th>Skewness</th>
<th>Std. Error of Skewness</th>
<th>Kurtosis</th>
<th>Std. Error of Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1.129</td>
<td>.044</td>
<td>1.818</td>
<td>.088</td>
</tr>
<tr>
<td></td>
<td>-4.79</td>
<td>.058</td>
<td>-.412</td>
<td>.115</td>
</tr>
<tr>
<td></td>
<td>-2.197</td>
<td>.056</td>
<td>6.991</td>
<td>.113</td>
</tr>
</tbody>
</table>

Standardized Coefficients Calculator

Copy variable #1 and #2 into the skewness and kurtosis calculator

Note. Prior to calculating parametric independent \(t \)-tests, at least half of your standardized coefficients should be within the +/- 3 range.

5.4 Step Three

Calculate a Parametric Independent Samples \(t \)-test on Data (after you have unsplit your file)
CHAPTER 5. CONDUCTING A PARAMETRIC INDEPENDENT SAMPLES T-TEST

✓ Analyze
✓ Compare Means
✓ Independent Samples t-test

Test Variable would be your Dependent Variable (e.g., test scores)
Grouping Variable would be your dichotomous Independent Variable

http://cnx.org/content/m37279/latest/figure4.10.PNG/image
√ Define Groups
√ Group One is No. 1 and Group Two is No. 2 (or whatever numbers you used to identify each group)
Note: Click on view than value labels to find the code for each group.
√ Continue
5.5 Step Four

Check for Statistical Significance
* Go to the Independent Samples Test Box (bottom row~ Equal variances not assumed) and look at the cell labeled Sig. (2-tailed) to check for significance. Always use the bottom row.
* If you have any value less than .05 then you have statistical significance, unless you have adjusted for multiple statistical analyses using the Bonferroni procedure. Remember to replace the third zero with a 1, if the sig value is .000 (i.e., if the sig value reads as .000, replace the third 0, so it reads as .001). If you calculate more than one t-test, you must use the

<table>
<thead>
<tr>
<th>Independent Samples Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levene’s Test for Equality of Variances</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>Verbal IQ (Wechsler Verbal Intelligence 3)</td>
</tr>
<tr>
<td>Equal variances not assumed</td>
</tr>
</tbody>
</table>

Table 5.2: Independent Samples Test

1. Numerical Sentence = \(t(df)_{sp} = sp_t, sp_p < sp_{.001} \) (or Bonferroni-adjusted alpha significance error rate).
 - df is located in Independent Samples Box
 - t is located in Independent Samples Box
2. Numerical sentence is written as: \(t(686.95) = 34.67 \; p < .001 \), example was statistically significant.

5.6 Writing Up Your Statistics

So, how do you "write up" your Research Questions and your Results? Schuler W. Huck (2000) in his seminal book entitled, *Reading Statistics and Research*, points to the importance of your audience understanding and making sense of your research in written form. Huck further states:

5.6.1

This book is designed to help people decipher what researchers are trying to communicate in the written or oral summaries of their investigations. Here, the goal is simply to distill meaning from the words, symbols,
Tables, and figures included in the research report. To be competent in this arena, one must not only be able to decipher what’s presented but also to "fill in the holes"; this is the case because researchers typically assume that those receiving the research report are familiar with unmentioned details of the research process and statistical treatment of data.

Researchers and Professors John Slate and Ana Rojas-LeBouef understand this critical issue, so often neglected or not addressed by other authors and researchers. They point to the importance of doctoral students "writing up their statistics" in a way that others can understand your reporting and as importantly, interpret the meaning of your significant findings and implications for the preparation and practice of educational leadership. Slate and LeBouef provide you with a model for "writing up your Independent Samples t-test statistics."

Click here to view: Writing Up Your Independent Samples t-test Statistics.

5.7 References

CHAPTER 5. CONDUCTING A PARAMETRIC INDEPENDENT SAMPLES T-TEST
Chapter 6

Conducting a Parametric Dependent Samples t-test (Paired Samples t-test)

NOTE: This chapter has been peer-reviewed, accepted, and endorsed by the National Council of Professors of Educational Administration (NCPEA) as a significant contribution to the scholarship and practice of education administration. Formatted and edited in Connexions by Theodore Creighton and Brad Bizzell, Virginia Tech, Janet Tareilo, Stephen F. Austin State University, and Thomas Kersten, Roosevelt University.

6.1

This chapter is part of a larger Collection (Book) and is available at: Calculating Basic Statistical Procedures in SPSS: A Self-Help and Practical Guide to Preparing Theses, Dissertations, and Manuscripts

NOTE: Slate and LeBouef have written a "companion book" which is available at: Preparing and Presenting Your Statistical Findings: Model Write Ups

Authors Information

John R. Slate is a Professor at Sam Houston State University where he teaches Basic and Advanced Statistics courses, as well as professional writing, to doctoral students in Educational Leadership and Counseling. His research interests lie in the use of educational databases, both state and national, to reform school practices. To date, he has chaired and/or served over 100 doctoral student dissertation committees. Recently, Dr. Slate created a website Writing and Statistical Help to assist students and faculty with both statistical assistance and in editing/writing their dissertations/theses and manuscripts.

1This content is available online at <http://cnx.org/content/m37328/1.6/>.
2http://my.qoop.com/store/NCPEA-Publications-17814721030763212/
3http://my.qoop.com/store/NCPEA-Publications-17814721030763212/
4http://www.writingandstatisticalhelp.com
Ana Rojas-LeBouef is a Literacy Specialist at the Reading Center at Sam Houston State University where she teaches developmental reading courses. She recently completed her doctoral degree in Reading, where she conducted a 16-year analysis of Texas statewide data regarding the achievement gap. Her research interests lie in examining the inequities in achievement among ethnic groups. Dr. Rojas-LeBouef also assists students and faculty in their writing and statistical needs on the website Writing and Statistical Help.⁵

Editors Information

Theodore B. Creighton, is a Professor at Virginia Tech and the Publications Director for NCPEA Publications⁶, the Founding Editor of Education Leadership Review,⁷ and the Senior Editor of the NCPEA Connexions Project.

Brad E. Bizzell, is a recent graduate of the Virginia Tech Doctoral Program in Educational Leadership and Policy Studies, and is a School Improvement Coordinator for the Virginia Tech Training and Technical Assistance Center. In addition, Dr. Bizzell serves as an Assistant Editor of the NCPEA Connexions Project in charge of technical formatting and design.

Janet Tareilo, is a Professor at Stephen F. Austin State University and serves as the Assistant Director of NCPEA Publications. Dr. Tareilo also serves as an Assistant Editor of the NCPEA Connexions Project and as an editor and reviewer for several national and international journals in educational leadership.

Thomas Kersten is a Professor at Roosevelt University in Chicago. Dr. Kersten is widely published and an experienced editor and is the author of Taking the Mystery Out of Illinois School Finance⁸, a Connexions Print on Demand publication. He is also serving as Editor in Residence for this book by Slate and LeBouef.

6.2 Conducting a Parametric Dependent Samples t-test

In this set of steps, readers will calculate either a parametric or a nonparametric statistical analysis, depending on whether the data for the dependent variable reflect a normal distribution. A parametric statistical procedure requires that its data be reflective of a normal curve whereas no such assumption is made in the use of a nonparametric procedure. Of the two types of statistical analyses, the parametric procedure is the more powerful one in ascertaining whether or not a statistically significant difference, in this case, exists. As such, parametric procedures are preferred over nonparametric procedures. When data are not normally distributed, however, parametric analyses may provide misleading and inaccurate results. According, nonparametric analyses should be used in cases where data are not reflective of a normal curve. In this set of steps, readers are provided with information on how to make the determination of normally or nonnormally distributed data. For detailed information regarding the assumptions underlying parametric and nonparametric procedures, readers are referred to the Hyperstats Online Statistics Textbook at http://davidmlane.com/hyperstat/⁹ or to the Electronic Statistics Textbook (2011) at http://www.statsoft.com/textbook/¹⁰

For this parametric dependent samples t-test to be appropriately used, at least half of the standardized skewness coefficients and the standardized kurtosis coefficients must be within the normal range (±3, Onwuegbuzie & Daniel, 2002). Research questions for which dependent samples t-tests are appropriate involve asking for differences in a dependent variable by group membership (i.e., only two groups are present for t-tests and, in this case, must be connected). The research question, “What is the effect of a reading intervention program on science performance among elementary school students?” could be answered through use of an dependent samples t-test.

⁵http://www.writingandstatisticalhelp.com
⁶http://www.ncpeapublications.org
⁷http://ncpeapublications.org/about-elr.html
⁸http://cnx.org/content/col10606/latest/
⁹http://davidmlane.com/hyperstat/
¹⁰http://www.statsoft.com/textbook/
6.3 Step One:

Compute Measures of Normality for the Dependent Variable

√ Analyze
* Descriptive Statistics
* Frequencies

√ Move over the dependent (outcome) variable

[Image: http://cnx.org/content/m37328/latest/figure5.1.PNG/image]
CHAPTER 6. CONDUCTING A PARAMETRIC DEPENDENT SAMPLES
T-TEST (PAIRED SAMPLES T-TEST)

√ Statistics

* Skewness [Note. Skewness refers to the extent to which the data are normally distributed around the mean. Skewed data involve having either mostly high scores with a few low ones or having mostly low scores with a few high ones.] Readers are referred to the following sources for a more detailed definition of skewness: http://www.statistics.com/index.php?page=glossary&term_id=35613 and http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statisticsb14

To standardize the skewness value so that its value can be constant across datasets and across studies, the following calculation must be made: Take the skewness value from the SPSS output and divide it by the Std. error of skewness. If the resulting calculation is within -3 to +3, then the skewness of the dataset is within the range of normality (Onwuegbuzie & Daniel, 2002). If the resulting calculation is outside of this +/−3 range, the dataset is not normally distributed.

* Kurtosis [Note. Kurtosis also refers to the extent to which the data are normally distributed around the mean. This time, the data are piled up higher than normal around the mean or piled up higher than normal at the ends of the distribution.] Readers are referred to the following sources for a more detailed definition of kurtosis: http://www.statistics.com/index.php?page=glossary&term_id=32615 and http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statisticsb16

To standardize the kurtosis value so that its value can be constant across datasets and across studies, the following calculation must be made: Take the kurtosis value from the SPSS output and divide it by the Std. error of kurtosis. If the resulting calculation is within -3 to +3, then the kurtosis of the dataset is within the range of normality (Onwuegbuzie & Daniel, 2002). If the resulting calculation is outside of this +/−3 range, the dataset is not normally distributed.
of this +/-3 range, the dataset is not normally distributed.

* Continue

6.4 Step Two:

Check for Skewness and Kurtosis values falling within/without the parameters of normality (-3 to +3). Note that each variable below has its own skewness and its own kurtosis values. Thus, a total of three standardized skewness coefficients and three standardized kurtosis coefficients can be calculated from information in the table below.

<table>
<thead>
<tr>
<th></th>
<th>CH005TC09R</th>
<th>CL005TC09R</th>
<th>CW005TC09R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17http://cnx.org/content/m37328/latest/figure5.3.PNG/image
Table 6.1: Skewness and Kurtosis Coefficients

<table>
<thead>
<tr>
<th></th>
<th>Valid</th>
<th>1805</th>
<th>1877</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3125</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5197</td>
<td>6517</td>
<td>6445</td>
</tr>
<tr>
<td>Skewness</td>
<td>-1.129</td>
<td>-.479</td>
<td>-2.197</td>
</tr>
<tr>
<td>Std. Error of Skewness</td>
<td>.044</td>
<td>.058</td>
<td>.056</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>1.818</td>
<td>-.412</td>
<td>6.991</td>
</tr>
<tr>
<td>Std. Error of Kurtosis</td>
<td>.088</td>
<td>.115</td>
<td>.113</td>
</tr>
</tbody>
</table>

Standardized Coefficients Calculator
Copy variable #1 and #2 into the skewness and kurtosis calculator

http://cnx.org/content/m37328/latest/figure5.4.PNG/image
Charts (these are calculated only if you wish to have visual depictions of skewness and of kurtosis—they are not required)

* Histogram ~ with normal curve (not required, optional)

6.5 Step Three:

Calculate Paired Samples t-test on Data

✓ Analyze

✓ Compare Means

✓ Paired samples t-test

19http://cnx.org/content/m37328/latest/figure5.5.PNG/image
CHAPTER 6. CONDUCTING A PARAMETRIC DEPENDENT SAMPLES T-TEST (PAIRED SAMPLES T-TEST)

![Image of SPSS interface](http://cnx.org/content/m37328/latest/figure5.6.PNG/image)

- Click on one dependent variable
- Arrow to send over to Paired Variables Side, Variable 1

20 [Link](http://cnx.org/content/m37328/latest/figure5.6.PNG/image)
√ Click on second dependent variable
√ Arrow to send over to Paired Variables Side, Variable 2

²¹http://cnx.org/content/m37328/latest/figure5.7.1.PNG/image
CHAPTER 6. CONDUCTING A PARAMETRIC DEPENDENT SAMPLES T-TEST (PAIRED SAMPLES T-TEST)

√ OK

6.6 Step Four:

Check for Statistical Significance

Go to the Paired Samples Test Box and look at the very last cell labeled Sig. (2-tailed) to check for significance.

If you have any value less than .05 then you have statistical significance. Remember to replace the third zero with a 1 to a .000 value (i.e., for a value of .000, you would write it as .001).

<table>
<thead>
<tr>
<th>Disability Group Membership</th>
<th>Paired Differences</th>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Deviation</td>
<td>Mean差异</td>
<td>95% Confidence Interval of the Difference</td>
</tr>
<tr>
<td></td>
<td>Std. Error Mean</td>
<td>Lower</td>
<td>Upper</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued on next page

22 http://cnx.org/content/m37328/latest/figure5.8.1.PNG/image
Table 6.2: Paired Samples Test

<table>
<thead>
<tr>
<th>Students with Learning Disabilities</th>
<th>Pair 1</th>
<th>Verbal IQ (Wechsler Verbal Intelligence 3) - Performance 1 (Picture Completion)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>76.192</td>
<td>10.141 .464 75.281 77.104 164.266 477 .000</td>
</tr>
</tbody>
</table>

1. Numerical sentence is written as:
Numerical Sentence = t(df)_{sp} = t_{sp}p_{sp} < .001 (or Bonferroni-adjusted alpha).
- df is located in Paired Samples Box
- t is located in Paired Samples Box
2. The outcome of the paired samples t-test, t(477) = 164.27 p < .001, was statistically significant.

6.7 Step Five:

Check for Effect Size
* Use the web-based calculator for effect size using the following websites:
Effect Size Calculators for Basic and Multivariate Statistical Procedures

Cohen’s d (1988)
d of 0.20 = small effect size (range 0.20 to 0.49)
d of 0.50 = moderate effect size (range 0.50 to 0.79)
d of 0.80 = large effect size (range 0.80 and above)
Note. Cohen’s d can be greater than 1.00. Therefore, a 0 should be placed in front of the decimal when the value is lower than 1.00.

23http://www.uccs.edu/~faculty/lbecker/
6.8 Step Six:

Narrative and Interpretation

1. type of t-test conducted and assumptions met
2. t value
3. degrees of freedom
4. p value

6.9 Writing Up Your Statistics

So, how do you "write up" your Research Questions and your Results? Schuler W. Huck (2000) in his seminal book entitled, *Reading Statistics and Research*, points to the importance of your audience understanding and making sense of your research in written form. Huck further states:

6.9.1

This book is designed to help people *decipher* what researchers are trying to communicate in the written or oral summaries of their investigations. Here, the goal is simply to distill meaning from the words, symbols, tables, and figures included in the research report. To be competent in this arena, one must not only be able to decipher what’s presented but also to "fill in the holes"; this is the case because researchers typically assume that those receiving the research report are familiar with unmentioned details of the research process and statistical treatment of data.

Researchers and Professors John Slate and Ana Rojas-LeBouef understand this critical issue, so often neglected or not addressed by other authors and researchers. They point to the importance of doctoral students "writing up their statistics" in a way that others can understand your reporting and as importantly, interpret the meaning of your significant findings and implications for the preparation and practice of educational leadership. Slate and LeBouef provide you with a model for "writing up your parametric dependent sample t-test statistics."
6.10 References

24 http://cnx.org/content/coll1299/latest/
25 http://davidmlane.com/hyperstat/
27 http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics
29 http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics
30 http://www.statsoft.com/textbook/
CHAPTER 6. CONDUCTING A PARAMETRIC DEPENDENT SAMPLES
T-TEST (PAIRED SAMPLES T-TEST)
Chapter 7

Conducting a Nonparametric Independent Samples t-test

NOTE: This Chapter has been peer-reviewed, accepted, and endorsed by the National Council of Professors of Educational Administration (NCPEA) as a significant contribution to the scholarship and practice of education administration. Formatted and edited in Connexions by Theodore Creighton and Brad Bizzell, Virginia Tech, Janet Tareilo, Stephen F. Austin State University, and Thomas Kersten, Roosevelt University.

7.1

This chapter is part of a larger Collection (Book) and is available at: Calculating Basic Statistical Procedures in SPSS: A Self-Help and Practical Guide to Preparing Theses, Dissertations, and Manuscripts

NOTE: Slate and LeBouef have written a "companion book" which is available at: Preparing and Presenting Your Statistical Findings: Model Write Ups

Authors Information

John R. Slate is a Professor at Sam Houston State University where he teaches Basic and Advanced Statistics courses, as well as professional writing, to doctoral students in Educational Leadership and Counseling. His research interests lie in the use of educational databases, both state and national, to reform school practices. To date, he has chaired and/or served over 100 doctoral student dissertation committees. Recently, Dr. Slate created a website Writing and Statistical Help to assist students and faculty with both statistical assistance and in editing/writing their dissertations/theses and manuscripts.

1This content is available online at <http://cnx.org/content/m37330/1.6/>.
2http://my.qoop.com/store/NCPEA-Publications-1781472163076212/
3http://my.qoop.com/store/NCPEA-Publications-1781472163076212/
4http://www.writingandstatisticalhelp.com
Ana Rojas-LeBouef is a Literacy Specialist at the Reading Center at Sam Houston State University where she teaches developmental reading courses. She recently completed her doctoral degree in Reading, where she conducted a 16-year analysis of Texas statewide data regarding the achievement gap. Her research interests lie in examining the inequities in achievement among ethnic groups. Dr. Rojas-LeBouef also assists students and faculty in their writing and statistical needs on the website Writing and Statistical Help.5

Editors Information

Theodore B. Creighton, is a Professor at Virginia Tech and the Publications Director for NCPEA Publications6, the Founding Editor of Education Leadership Review,7 and the Senior Editor of the NCPEA Connexions Project.

Brad E. Bizzell, is a recent graduate of the Virginia Tech Doctoral Program in Educational Leadership and Policy Studies, and is a School Improvement Coordinator for the Virginia Tech Training and Technical Assistance Center. In addition, Dr. Bizzell serves as an Assistant Editor of the NCPEA Connexions Project in charge of technical formatting and design.

Janet Tareilo, is a Professor at Stephen F. Austin State University and serves as the Assistant Director of NCPEA Publications. Dr. Tareilo also serves as an Assistant Editor of the NCPEA Connexions Project and as an editor and reviewer for several national and international journals in educational leadership.

Thomas Kersten is a Professor at Roosevelt University in Chicago. Dr. Kersten is widely published and an experienced editor and is the author of Taking the Mystery Out of Illinois School Finance8, a Connexions Print on Demand publication. He is also serving as Editor in Residence for this book by Slate and LeBouef.

7.2 Conducting a Nonparametric Independent Samples \(t \)-test

In this set of steps, readers will calculate either a parametric or a nonparametric statistical analysis, depending on whether the data for the dependent variable reflect a normal distribution. A parametric statistical procedure requires that its data be reflective of a normal curve whereas no such assumption is made in the use of a nonparametric procedure. Of the two types of statistical analyses, the parametric procedure is the more powerful one in ascertaining whether or not a statistically significant difference, in this case, exists. As such, parametric procedures are preferred over nonparametric procedures. When data are not normally distributed, however, parametric analyses may provide misleading and inaccurate results. According, nonparametric analyses should be used in cases where data are not reflective of a normal curve. In this set of steps, readers are provided with information on how to make the determination of normally or nonnormally distributed data. For detailed information regarding the assumptions underlying parametric and nonparametric procedures, readers are referred to the Hyperstats Online Statistics Textbook at http://davidmlane.com/hyperstat/ or to the Electronic Statistics Textbook (2011) at http://www.statsoft.com/textbook/

For this nonparametric independent samples \(t \)-test to be appropriately used, at least half of the standardized skewness coefficients and the standardized kurtosis coefficients must be outside the normal range (+/-3, Onwuegbuzie & Daniel, 2002). Research questions for which nonparametric independent samples \(t \)-tests are appropriate involve asking for differences in a dependent variable by group membership (i.e., only two groups are present for \(t \)-tests). The research question, “What is the difference between boys and girls in their science performance among middle school students?” could be answered through use of a nonparametric independent samples \(t \)-test.

5http://www.writingandstatisticalhelp.com
6http://www.ncpeapublications.org
7http://ncpeapublications.org/about-dr.html
8http://cnx.org/content/col10066/latest/
7.3 Step One:

Calculate Frequencies on the Split Groups

√ Data
* Split File

Your screen will show that all cases are going to be analyzed and a “do not create groups”. You will need to click the compare groups and move the independent variable over to the “Group Based on”.

http://cnx.org/content/m37330/latest/figure6.1.PNG/image
After you do this, your screen should resemble the following:

\[\text{http://cnx.org/content/m37330/latest/figure6.2.PNG/image}\]
Then click OK
✓ Analyze
* Descriptive Statistics
* Frequencies

http://cnx.org/content/m37330/latest/figure6.3.PNG/image
CHAPTER 7. CONDUCTING A NONPARAMETRIC INDEPENDENT SAMPLES T-TEST

Move over the dependent (outcome) variable

12http://cnx.org/content/m37330/latest/figure6.4.PNG/image
Statistics

* Mean

* Standard Deviation

* Skewness [Note. Skewness refers to the extent to which the data are normally distributed around the mean. Skewed data involve having either mostly high scores with a few low ones or having mostly low scores with a few high ones. Readers are referred to the following sources for a more detailed definition of skewness:

http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics

To standardize the skewness value so that its value can be constant across datasets and across studies, the following calculation must be made: Take the skewness value from the SPSS output and divide it by the Std. error of skewness. If the resulting calculation is within -3 to +3, then the skewness of the dataset is within the range of normality (Onwuegbuzie & Daniel, 2002). If the resulting calculation is outside of this +/-3 range, the dataset is not normally distributed.

* Kurtosis [Note. Kurtosis also refers to the extent to which the data are normally distributed around the mean. This time, the data are piled up higher than normal around the mean or piled up higher than normal at the ends of the distribution.] Readers are referred to the following sources for a more detailed definition of kurtosis:

To standardize the kurtosis value so that its value can be constant across datasets and across studies, the following calculation must be made: Take the kurtosis value from the SPSS output and divide it by the Std. error of kurtosis. If the resulting calculation is within -3 to +3, then the kurtosis of the dataset is within the range of normality (Onwuegbuzie & Daniel, 2002). If the resulting calculation is outside

13 http://cnx.org/content/m37330/latest/figure6.5.PNG/image
15 http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statisticsb
of this +/-3 range, the dataset is not normally distributed.

http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics

* Continue
* OK

Charts (these are calculated only if you wish to have visual depictions of skewness and of kurtosis—they are not required)

* Histogram ~ with normal curve (not required, optional)

* Continue

* OK

\(^{17}\)http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics

\(^{18}\)http://cnx.org/content/m37330/latest/figure6.6.PNG/image
Note: Before you continue to another application you must complete the following:

√ Data
√ Split Files
√ Analyze all cases, do not create groups
√ OK

19 http://cnx.org/content/m37330/latest/figure6.7.png/image
7.4 Step Two:

Check for Skewness and Kurtosis values falling within/without the parameters of normality (-3 to +3). Note that each variable has its own skewness value and its own kurtosis value. Thus, a total of three standardized skewness coefficients and three standardized kurtosis coefficients can be calculated from information in the table below.

<table>
<thead>
<tr>
<th></th>
<th>CH005TC09R</th>
<th>CL005TC09R</th>
<th>CW005TC09R</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Valid</td>
<td>3125</td>
<td>1805</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
<td>5197</td>
<td>6517</td>
</tr>
</tbody>
</table>

continued on next page

²⁰http://cnx.org/content/m37330/latest/figure6.8.PNG/image
<table>
<thead>
<tr>
<th>Skewness</th>
<th>-1.129</th>
<th>-.479</th>
<th>-2.197</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std. Error of Skewness</td>
<td>.044</td>
<td>.058</td>
<td>.056</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>1.818</td>
<td>-.412</td>
<td>6.991</td>
</tr>
<tr>
<td>Std. Error of Kurtosis</td>
<td>.088</td>
<td>.115</td>
<td>.113</td>
</tr>
</tbody>
</table>

Table 7.1: Skewness and Kurtosis Coefficients

Standard Coefficients Calculator
Copy variable #1 and #2 into the skewness and kurtosis calculator

7.5 Step Three

Calculate Nonparametric Independent Samples t-test on Data

[21]http://cnx.org/content/m37330/latest/figure6.9.PNG/image
CHAPTER 7. CONDUCTING A NONPARAMETRIC INDEPENDENT SAMPLES T-TEST

√ Analyze
√ Nonparametric Tests
√ 2 Independent Samples
√ Test Variable would be your Dependent Variable (e.g., test scores)
√ Grouping Variable would be your dichotomous Independent Variable

![Image](http://cnx.org/content/m37330/latest/figure6.10.1.png)

√ Define Groups
√ Group One is No. 1 and Group Two is No. 2 (or whatever numbers you used to identify each group)

Note: Click on view than value labels to find the code for each group.
√ Continue
√ OK

²²http://cnx.org/content/m37330/latest/figure6.10.1.png/image
7.6 Step Four:

Check for Statistical Significance

Test Statistics

<table>
<thead>
<tr>
<th>Grouping Variable: Disability Group Membership</th>
<th>Performance IQ (Wechsler Performance Intelligence 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>6765.500</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>44166.500</td>
</tr>
<tr>
<td>Z</td>
<td>-20.752</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.000</td>
</tr>
</tbody>
</table>

Table 7.2

a. Grouping Variable: Disability Group Membership

Numerical sentence is written as: $U = 6765.50, p < .001$
CHAPTER 7. CONDUCTING A NONPARAMETRIC INDEPENDENT SAMPLES T-TEST

7.7 Step Five:

Check for Effect Size

* Use the web-based calculator for effect size using the following websites:
 Effect Size Calculators for Basic and Multivariate Statistical Procedures

7.8 Write Up Your Statistics

So, how do you "write up" your Research Questions and your Results? Schuler W. Huck (2000) in his seminal book entitled, *Reading Statistics and Research*, points to the importance of your audience understanding and making sense of your research in written form. Huck further states:

7.8.1

This book is designed to help people decipher what researchers are trying to communicate in the written or oral summaries of their investigations. Here, the goal is simply to distill meaning from the words, symbols, tables, and figures included in the research report. To be competent in this arena, one must not only be able to decipher what’s presented but also to "fill in the holes"; this is the case because researchers typically assume that those receiving the research report are familiar with unmentioned details of the research process and statistical treatment of data.

Researchers and Professors John Slate and Ana Rojas-LeBouef understand this critical issue, so often neglected or not addressed by other authors and researchers. They point to the importance of doctoral students "writing up their statistics" in a way that others can understand your reporting and as importantly, interpret the meaning of your significant findings and implications for the preparation and practice of educational leadership. Slate and LeBouef provide you with a model for "writing up your nonparametric independent samples t-test statistics."

Click here to view: Writing Up Your Nonparametric Independent Samples t-test Statistics

24 http://www.uccs.edu/~faculty/lbecker/
25 http://cnx.org/content/m37330/latest/figure6.12.png/image
26 http://cnx.org/content/col11290/latest/
7.9 References

27 http://davidmlane.com/hyperstat/
29http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statisticsb
31http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statisticsb
32http://www.statsoft.com/textbook/
CHAPTER 7. CONDUCTING A NONPARAMETRIC INDEPENDENT SAMPLES T-TEST
Chapter 8

Conducting a Nonparametric Paired Samples t-test

NOTE: This chapter has been peer-reviewed, accepted, and endorsed by the National Council of Professors of Educational Administration (NCPEA) as a significant contribution to the scholarship and practice of education administration. Formatted and edited in Connexions by Theodore Creighton and Brad Bizzell, Virginia Tech, Janet Tareilo, Stephen F. Austin State University, and Thomas Kersten, Roosevelt University.

8.1

This chapter is part of a larger Collection (Book) and is available at: Calculating Basic Statistical Procedures in SPSS: A Self-Help and Practical Guide to Preparing Theses, Dissertations, and Manuscripts

NOTE: Slate and LeBouef have written a "companion book" which is available at: Preparing and Presenting Your Statistical Findings: Model Write Ups

Authors Information

John R. Slate is a Professor at Sam Houston State University where he teaches Basic and Advanced Statistics courses, as well as professional writing, to doctoral students in Educational Leadership and Counseling. His research interests lie in the use of educational databases, both state and national, to reform school practices. To date, he has chaired and/or served over 100 doctoral student dissertation committees. Recently, Dr. Slate created a website Writing and Statistical Help to assist students and faculty with both statistical assistance and in editing/writing their dissertations/theses and manuscripts.

1This content is available online at <http://cnx.org/content/m37333/1.5/>.
2http://my.qoop.com/store/NCPEA-Publications-1781472103076212/
3http://my.qoop.com/store/NCPEA-Publications-1781472103076212/
4http://www.writingandstatisticalhelp.com
Ana Rojas-LeBouef is a Literacy Specialist at the Reading Center at Sam Houston State University where she teaches developmental reading courses. She recently completed her doctoral degree in Reading, where she conducted a 16-year analysis of Texas statewide data regarding the achievement gap. Her research interests lie in examining the inequities in achievement among ethnic groups. Dr. Rojas-LeBouef also assists students and faculty in their writing and statistical needs on the website Writing and Statistical Help.5

Editors Information

Theodore B. Creighton, is a Professor at Virginia Tech and the Publications Director for NCPEA Publications6, the Founding Editor of Education Leadership Review,7 and the Senior Editor of the NCPEA Connexions Project.

Brad E. Bizzell, is a recent graduate of the Virginia Tech Doctoral Program in Educational Leadership and Policy Studies, and is a School Improvement Coordinator for the Virginia Tech Training and Technical Assistance Center. In addition, Dr. Bizzell serves as an Assistant Editor of the NCPEA Connexions Project in charge of technical formatting and design.

Janet Tareilo, is a Professor at Stephen F. Austin State University and serves as the Assistant Director of NCPEA Publications. Dr. Tareilo also serves as an Assistant Editor of the NCPEA Connexions Project and as an editor and reviewer for several national and international journals in educational leadership.

Thomas Kersten is a Professor at Roosevelt University in Chicago. Dr. Kersten is widely published and an experienced editor and is the author of Taking the Mystery Out of Illinois School Finance8, a Connexions Print on Demand publication. He is also serving as Editor in Residence for this book by Slate and LeBouef.

8.2 Conducting a Nonparametric Paired Samples t-test

In this set of steps, readers will calculate either a parametric or a nonparametric statistical analysis, depending on whether the data for the dependent variable reflect a normal distribution. A parametric statistical procedure requires that its data be reflective of a normal curve whereas no such assumption is made in the use of a nonparametric procedure. Of the two types of statistical analyses, the parametric procedure is the more powerful one in ascertaining whether or not a statistically significant difference, in this case, exists. As such, parametric procedures are preferred over nonparametric procedures. When data are not normally distributed, however, parametric analyses may provide misleading and inaccurate results. According, nonparametric analyses should be used in cases where data are not reflective of a normal curve. In this set of steps, readers are provided with information on how to make the determination of normally or nonnormally distributed data. For detailed information regarding the assumptions underlying parametric and nonparametric procedures, readers are referred to the Hyperstats Online Statistics Textbook at http://davidmlane.com/hyperstat/ or to the Electronic Statistics Textbook (2011) at http://www.statsoft.com/textbook/

For this nonparametric dependent samples t-test to be appropriately used, at least half of the standardized skewness coefficients and the standardized kurtosis coefficients must be outside the normal range (+/-3, Onwuegbuzie & Daniel, 2002). Research questions for which nonparametric dependent samples t-test are appropriate involve asking for differences in a dependent variable by group membership (i.e., only two groups are present for the t-test and, in this case, their scores are connected). The research question, “What is the effect of the new science program on student science performance among elementary school students?” could be answered through use of a nonparametric dependent t-test.

5http://www.writingandstatisticalhelp.com
6http://www.ncpeapublications.org
7http://ncpeapublications.org/about-dr.html
8http://cnx.org/content/col10696/latest/
8.2.1 Step One:

Compute Measures of Normality for the Dependent Variable

√ Analyze
* Descriptive Statistics
* Frequencies

√ Move over the dependent (outcome) variable

http://cnx.org/content/m37333/latest/figure7_1.png/image
Statistics

* Skewness [Note. Skewness refers to the extent to which the data are normally distributed around the mean. Skewed data involve having either mostly high scores with a few low ones or having mostly low scores with a few high ones.] Readers are referred to the following sources for a more detailed definition of skewness: http://www.statistics.com/index.php?page=glossary&term_id=356 and http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics

To standardize the skewness value so that its value can be constant across datasets and across studies, the following calculation must be made: Take the skewness value from the SPSS output and divide it by the Std. error of skewness. If the resulting calculation is within -3 to +3, then the skewness of the dataset is within the range of normality (Owuegbuzie & Daniel, 2002). If the resulting calculation is outside of this +/-3 range, the dataset is not normally distributed.

* Kurtosis [Note. Kurtosis also refers to the extent to which the data are normally distributed around the mean. This time, the data are piled up higher than normal around the mean or piled up higher than normal at the ends of the distribution.] Readers are referred to the following sources for a more detailed definition of kurtosis: http://www.statistics.com/index.php?page=glossary&term_id=326 and http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics

To standardize the kurtosis value so that its value can be constant across datasets and across studies, the following calculation must be made: Take the kurtosis value from the SPSS output and divide it by the Std. error of kurtosis. If the resulting calculation is within -3 to +3, then the kurtosis of the dataset is within the range of normality (Owuegbuzie & Daniel, 2002). If the resulting calculation is outside of this +/-3 range, the dataset is not normally distributed.

* Continue

* OK
8.2.2 Step Two:

Check for Skewness and Kurtosis values falling within/without the parameters of normality (-3 to +3). Note that each variable below has its own skewness value and its own kurtosis value. Thus, a total of three standardized skewness coefficients and three standardized kurtosis coefficients can be calculated from information in the table below.

<table>
<thead>
<tr>
<th>Campus</th>
<th>CH005TC09R</th>
<th>CL005TC09R</th>
<th>CW005TC09R</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Valid</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH005TC09R</td>
<td>CL005TC09R</td>
</tr>
<tr>
<td>Missing</td>
<td>5197</td>
<td>6517</td>
<td>6445</td>
</tr>
<tr>
<td></td>
<td>-1.129</td>
<td>-0.479</td>
<td>-2.197</td>
</tr>
<tr>
<td></td>
<td>.044</td>
<td>.058</td>
<td>.056</td>
</tr>
<tr>
<td></td>
<td>1.818</td>
<td>-0.412</td>
<td>6.991</td>
</tr>
<tr>
<td></td>
<td>.088</td>
<td>.115</td>
<td>.113</td>
</tr>
</tbody>
</table>

Table 8.1: Skewness and Kurtosis coefficients

\[\text{http://cnx.org/content/m37333/latest/figure7.3.PNG/image} \]
Standard Coefficients Calculator
Copy variable #1 and #2 into the skewness and kurtosis calculator

√ Charts (these are calculated only if you wish to have visual depictions of skewness and of kurtosis—they are not required)
* Histogram ~ with normal curve (not required, optional)

12 http://cnx.org/content/m37333/latest/figure7.4.png/image
8.2.3 Step Three:
Calculate Nonparametric Paired Samples t-test on Data

\[\text{http://cnx.org/content/m37333/latest/figure7.5.png/image} \]
CHAPTER 8. CONDUCTING A NONPARAMETRIC PAIRED SAMPLES T-TEST

Click on one dependent variable
* Arrow to send over to Test Pairs, Variable 1
Click on second dependent variable
* Arrow to send over to Test Pairs, Variable 2
* OK

http://cnx.org/content/m37333/latest/figure7.6.PNG/image
8.2.4 Step Four:

Check for Statistical Significance

Test Statistics\(^b\)

<table>
<thead>
<tr>
<th>CL005TC09R</th>
<th>CH005TC09R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>-34.829(^a)</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.000</td>
</tr>
</tbody>
</table>

Table 8.2

a. Based on positive ranks.
b. Wilcoxon Signed Rank test

Numerical sentence is written as: \(z = -34.83, p < .001 \)

\(^{15}\)http://cnx.org/content/m37333/latest/figure7.7.png/image
8.2.5 Step Five

Check for Effect Size

* Use the web-based calculator for effect size using the following website:
 Effect Size Calculators for Basic and Multivariate Statistical Procedures

8.3 Writing Up Your Statistics

So, how do you "write up" your Research Questions and your Results? Schuler W. Huck (2000) in his seminal book entitled, *Reading Statistics and Research*, points to the importance of your audience understanding and making sense of your research in written form. Huck further states:

8.3.1

This book is designed to help people decipher what researchers are trying to communicate in the written or oral summaries of their investigations. Here, the goal is simply to distill meaning from the words, symbols, tables, and figures included in the research report. To be competent in this arena, one must not only be able to decipher what’s presented but also to "fill in the holes"; this is the case because researchers typically assume that those receiving the research report are familiar with unmentioned details of the research process and statistical treatment of data.

Researchers and Professors John Slate and Ana Rojas-LeBouef understand this critical issue, so often neglected or not addressed by other authors and researchers. They point to the importance of doctoral students "writing up their statistics" in a way that others can understand your reporting and as importantly, interpret the meaning of your significant findings and implications for the preparation and practice of educational leadership. Slate and LeBouef provide you with a model for "writing up your nonparametric paired samples t-test."

Click here to view: Writing Up Your Nonparametric Paired Samples t-test Statistics

16http://www.uccs.edu/~faculty/lbecker/
17http://cnx.org/content/m37333/latest/figure7.8.png/image
18http://cnx.org/content/col11290/latest/
8.4 References

19http://davidmlane.com/hyperstat/
21http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics
23http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics
24http://www.statsoft.com/textbook/
Chapter 9

Conducting a Parametric One-Way Analysis of Variance

NOTE: This chapter has been peer-reviewed, accepted, and endorsed by the National Council of Professors of Educational Administration (NCPEA) as a significant contribution to the scholarship and practice of education administration. Formatted and edited in Connexions by Theodore Creighton and Brad Bizzell, Virginia Tech, Janet Tareilo, Stephen F. Austin State University, and Thomas Kersten, Roosevelt University.

9.1

This chapter is part of a larger Collection (Book) and is available at: Calculating Basic Statistical Procedures in SPSS: A Self-Help and Practical Guide to Preparing Theses, Dissertations, and Manuscripts

NOTE: Slate and LeBouef have written a "companion book" which is available at: Preparing and Presenting Your Statistical Findings: Model Write Ups

Authors Information

John R. Slate is a Professor at Sam Houston State University where he teaches Basic and Advanced Statistics courses, as well as professional writing, to doctoral students in Educational Leadership and Counseling. His research interests lie in the use of educational databases, both state and national, to reform school practices. To date, he has chaired and/or served over 100 doctoral student dissertation committees. Recently, Dr. Slate created a website Writing and Statistical Help to assist students and faculty with both statistical assistance and in editing/writing their dissertations/theses and manuscripts.
Ana Rojas-LeBouef is a Literacy Specialist at the Reading Center at Sam Houston State University where she teaches developmental reading courses. She recently completed her doctoral degree in Reading, where she conducted a 16-year analysis of Texas statewide data regarding the achievement gap. Her research interests lie in examining the inequities in achievement among ethnic groups. Dr. Rojas-LeBouef also assists students and faculty in their writing and statistical needs on the website Writing and Statistical Help.5

Editors Information

Theodore B. Creighton, is a Professor at Virginia Tech and the Publications Director for NCPEA Publications6, the Founding Editor of Education Leadership Review,7 and the Senior Editor of the NCPEA Connexions Project.

Brad E. Bizzell, is a recent graduate of the Virginia Tech Doctoral Program in Educational Leadership and Policy Studies, and is a School Improvement Coordinator for the Virginia Tech Training and Technical Assistance Center. In addition, Dr. Bizzell serves as an Assistant Editor of the NCPEA Connexions Project in charge of technical formatting and design.

Janet Tareilo, is a Professor at Stephen F. Austin State University and serves as the Assistant Director of NCPEA Publications. Dr. Tareilo also serves as an Assistant Editor of the NCPEA Connexions Project and as an editor and reviewer for several national and international journals in educational leadership.

Thomas Kersten is a Professor at Roosevelt University in Chicago. Dr. Kersten is widely published and an experienced editor and is the author of Taking the Mystery Out of Illinois School Finance8, a Connexions Print on Demand publication. He is also serving as Editor in Residence for this book by Slate and LeBouef.

9.2 Conducting a Parametric One-Way Analysis of Variance

In this set of steps, readers will calculate either a parametric or a nonparametric statistical analysis, depending on whether the data for the dependent variable reflect a normal distribution. A parametric statistical procedure requires that its data be reflective of a normal curve whereas no such assumption is made in the use of a nonparametric procedure. Of the two types of statistical analyses, the parametric procedure is the more powerful one in ascertaining whether or not a statistically significant difference, in this case, exists. As such, parametric procedures are preferred over nonparametric procedures. When data are not normally distributed, however, parametric analyses may provide misleading and inaccurate results. According, nonparametric analyses should be used in cases where data are not reflective of a normal curve. In this set of steps, readers are provided with information on how to make the determination of normally or nonnormally distributed data. For detailed information regarding the assumptions underlying parametric and nonparametric procedures, readers are referred to the Hyperstats Online Statistics Textbook at http://davidmlane.com/hyperstat/ or to the Electronic Statistics Textbook (2011) at http://www.statsoft.com/textbook/

For this parametric analysis of variance procedure to be appropriately used, at least half of the standardized skewness coefficients and the standardized kurtosis coefficients must be within the normal range (+/-3, Onwuegbuzie & Daniel, 2002). Research questions for which parametric analysis of variance procedures are appropriate involve asking for differences in a dependent variable by group membership (i.e., more than two groups may be present). The research question, “What is the difference in science achievement among elementary school students as a function of ethnic membership?” could be answered through use of an analysis of variance procedure.

5http://www.writingandstatisticalhelp.com
6http://www.ncpeapublications.org
7http://ncpeapublications.org/about-dr.html
8http://cnx.org/content/col10606/latest/
9.2.1 Step One:

Check for Skewness and Kurtosis values falling within/without the parameters of normality (-3 to +3)

√ Split your file on the basis on your independent variable/ fixed factor/grouping variable

After you do this, your screen should resemble the following:

http://cnx.org/content/m37334/latest/figure8.1.PNG/image
CHAPTER 9. CONDUCTING A PARAMETRIC ONE-WAY ANALYSIS OF VARIANCE

Your screen will show that all cases are going to be analyzed and a “do not create groups”. You will need to click the compare groups and move the independent variable over to the “Group Based on”. For most ANOVA procedures, your independent or grouping variable will have more than two groups.

10http://cnx.org/content/m37334/latest/figure8.2.1.PNG/image
1. Analyze
 * Descriptive Statistics
 * Frequencies

11 https://cnx.org/content/m37334/latest/figure8.3.PNG/image
CHAPTER 9. CONDUCTING A PARAMETRIC ONE-WAY ANALYSIS OF VARIANCE

√ Move over the dependent (outcome) variable

12 http://cnx.org/content/m37334/latest/figure8.4.PNG/image
\(^\sqrt{\text{Click on Statistics}}\)

Your screen will now look like this

\(^{13}\text{http://cnx.org/content/m37334/latest/figure8.5.PNG/image}\)
CHAPTER 9. CONDUCTING A PARAMETRIC ONE-WAY ANALYSIS OF VARIANCE

Skewness [Note. Skewness refers to the extent to which the data are normally distributed around the mean. Skewed data involve having either mostly high scores with a few low ones or having mostly low scores with a few high ones.] Readers are referred to the following sources for a more detailed definition of skewness: www.statistics.com/index.php?page=glossary&term_id=356 and www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics

To standardize the skewness value so that its value can be constant across datasets and across studies, the following calculation must be made: Take the skewness value from the SPSS output and divide it by the Std. error of skewness. If the resulting calculation is within -3 to +3, then the skewness of the dataset is within the range of normality (Onwuegbuzie & Daniel, 2002). If the resulting calculation is outside of this +/-3 range, the dataset is not normally distributed.

Kurtosis [Note. Kurtosis also refers to the extent to which the data are normally distributed around the mean. This time, the data are piled up higher than normal around the mean or piled up higher than normal at the ends of the distribution.] Readers are referred to the following sources for a more detailed definition of kurtosis: www.statistics.com/index.php?page=glossary&term_id=326 and www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics

To standardize the kurtosis value so that its value can be constant across datasets and across studies, the following calculation must be made: Take the kurtosis value from the SPSS output and divide it by the Std. error of kurtosis. If the resulting calculation is within -3 to +3, then the kurtosis of the dataset is within the range of normality (Onwuegbuzie & Daniel, 2002). If the resulting calculation is outside of this +/-3 range, the dataset is not normally distributed.

* Continue
* OK

14 http://cnx.org/content/m37334/latest/image8.6.png
Note: Before you continue to another application you must "UNSPLIT" the files before moving on to other steps:

- Data
- Split Files
- Analyze all cases, do not create groups
- OK

Check for Skewness and Kurtosis values falling within/without the parameters of normality (-3 to +3). Note that each variable below has its own skewness value and its own kurtosis value. Thus, a total of three standardized skewness coefficients and three standardized kurtosis coefficients can be calculated from information in the table below.

http://cnx.org/content/m37334/latest/figure8.7.png/image
CHAPTER 9. CONDUCTING A PARAMETRIC ONE-WAY ANALYSIS OF VARIANCE

Skewness and Kurtosis Coefficients

<table>
<thead>
<tr>
<th></th>
<th>CH005TC09R</th>
<th>CL005TC09R</th>
<th>CW005TC09R</th>
</tr>
</thead>
<tbody>
<tr>
<td>N Valid</td>
<td>3125</td>
<td>1805</td>
<td>1877</td>
</tr>
<tr>
<td>Missing</td>
<td>5197</td>
<td>6517</td>
<td>6445</td>
</tr>
<tr>
<td>Skewness</td>
<td>-1.129</td>
<td>-0.479</td>
<td>-2.197</td>
</tr>
<tr>
<td>Std. Error of Skewness</td>
<td>0.044</td>
<td>0.058</td>
<td>0.056</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>1.818</td>
<td>-0.42</td>
<td>6.991</td>
</tr>
<tr>
<td>Std. Error of Kurtosis</td>
<td>0.088</td>
<td>0.115</td>
<td>0.113</td>
</tr>
</tbody>
</table>

Table 9.1

Copy skewness and kurtosis information into the skewness and kurtosis calculator
9.2.2 Step Two

Compute Descriptive Statistics on the Dependent Variable

* Do so via the ANOVA procedure

* Note. Do not use the ANOVA statistical significance information provided in the output. Use only the Ms, SDs, and n.

* The screen shot will occur in the next step (Mean and standard deviation)

9.2.3 Step Three

Conduct Analysis of Variance

√ Analyze
√ General Linear Model

http://cnx.org/content/m37334/latest/calc.png/image
CHAPTER 9. CONDUCTING A PARAMETRIC ONE-WAY ANALYSIS OF VARIANCE

√ Univariate

√ Dependent variable is sent over to the top box, titled dependent variable
√ Grouping Variable is sent over to the fixed factor box

http://cnx.org/content/m37334/latest/figure8.8.png/image
125

<table>
<thead>
<tr>
<th>group</th>
<th>id</th>
<th>age</th>
<th>recorded age</th>
<th>wiqliq</th>
<th>wiqliq</th>
<th>pc</th>
<th>inf</th>
<th>cod</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>654</td>
<td>.</td>
<td>93</td>
<td>100</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>733</td>
<td>.</td>
<td>92</td>
<td>78</td>
<td>90</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>734</td>
<td>.</td>
<td>88</td>
<td>81</td>
<td>99</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>735</td>
<td>.</td>
<td>90</td>
<td>91</td>
<td>90</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>736</td>
<td>.</td>
<td>81</td>
<td>78</td>
<td>90</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>664</td>
<td>.</td>
<td>93</td>
<td>100</td>
<td>90</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>733</td>
<td>.</td>
<td>82</td>
<td>78</td>
<td>90</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>734</td>
<td>.</td>
<td>88</td>
<td>81</td>
<td>99</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>795</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>736</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>42</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>5</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>614</td>
<td>6</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>624</td>
<td>6</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>620</td>
<td>6</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>635</td>
<td>6</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>564</td>
<td>6</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>514</td>
<td>6</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>624</td>
<td>6</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>628</td>
<td>6</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>635</td>
<td>6</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>564</td>
<td>6</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>522</td>
<td>6</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>524</td>
<td>6</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>619</td>
<td>6</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Options
- Descriptive Statistics
- Estimate of effect size
- Continue

18 [http://cnx.org/content/m37334/latest/figure8.9.png/image]
CHAPTER 9. CONDUCTING A PARAMETRIC ONE-WAY ANALYSIS OF VARIANCE

√ Post Hoc
√ Scheffé
√ Click on variables on which you want the Post Hoc Tests
√ Continue
√ OK

http://cnx.org/content/m37334/latest/overall.png/image
9.2.4 Step Four

Check for Statistical Significance

1. Go to the ANOVA table and look at the far right column labeled Sig to check for statistical significance.
2. If you have any value less than .05 then you have statistical significance. Remember to replace the third zero with a 1, if the sig value is .000 (i.e., if the sig value reads as .000, replace the third 0, so it reads as .001).
3. Numerical Sentence = $F(df \text{ between}, \ df \text{ within})_{sp}=spF \ \text{value}_{sp}P_{sp}<sp.001$.
4. The outcome of the ANOVA, $F(2,1179) = 503.22, p = .001$, was

Dependent Variable: Verbal IQ (Wechsler Verbal Intelligence 3)

Tests Between-Subjects Effects

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>Df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
</table>

continued on next page

20http://cnx.org/content/m37334/latest/figure8.11.png/image
CHAPTER 9. CONDUCTING A PARAMETRIC ONE-WAY ANALYSIS OF VARIANCE

<table>
<thead>
<tr>
<th>Corrected</th>
<th>101503.093*</th>
<th>2</th>
<th>50751.547</th>
<th>503.219</th>
<th>.000</th>
<th>.461</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>6366052.170</td>
<td>1</td>
<td>6366052.170</td>
<td>63121.595</td>
<td>.000</td>
<td>.982</td>
</tr>
<tr>
<td>group</td>
<td>101503.093</td>
<td>2</td>
<td>50751.547</td>
<td>503.219</td>
<td>.000</td>
<td>.461</td>
</tr>
<tr>
<td>Error</td>
<td>118906.620</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7405615.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected</td>
<td>220409.713</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9.2

a. R Squared = .461 (Adjusted R Square = .460)

9.2.5 Step Five

1. Partial Eta2 is the effect size n^2
 .01 -.059 = small effect size
 .06 -.139 = moderate effect size
 .14 and above = large effect size

Note. n^2 cannot be greater than 1.00. Therefore, a 0 should not be placed in front of the decimal point.

9.2.6 Step Six:

Narrative and Interpretation
1. F value
2. degrees of freedom for groups and for participants
3. p value
4. Post hoc results
5. M, SD, and n for each group (in a table)

9.3 Writing Up Your Statistics

So, how do you "write up" your Research Questions and your Results? Schuler W. Huck (2000) in his seminal book entitled, *Reading Statistics and Research*, points to the importance of your audience understanding and making sense of your research in written form. Huck further states:

9.3.1

This book is designed to help people decipher what researchers are trying to communicate in the written or oral summaries of their investigations. Here, the goal is simply to distill meaning from the words, symbols, tables, and figures included in the research report. To be competent in this arena, one must not only be able to decipher what’s presented but also to "fill in the holes"; this is the case because researchers typically assume that those receiving the research report are familiar with unmentioned details of the research process and statistical treatment of data.

Researchers and Professors John Slate and Ana Rojas-LeBouef understand this critical issue, so often neglected or not addressed by other authors and researchers. They point to the importance of doctoral students "writing up their statistics" in a way that others can understand your reporting and as importantly,
interpret the meaning of your significant findings and implications for the preparation and practice of educational leadership. Slate and LeBouef provide you with a model for "writing up your parametric ANOVA statistics."

Click here to view: Writing Up Your Parametric One Way ANOVA Statistics

9.4 References

21http://cnx.org/content/col11299/latest/
22http://davidmlane.com/hyperstat/
24http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics
26http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics
27http://www.statsoft.com/textbook/
CHAPTER 9. CONDUCTING A PARAMETRIC ONE-WAY ANALYSIS OF VARIANCE
Chapter 10

Conducting a Nonparametric One-Way Analysis of Variance

NOTE: This chapter has been peer-reviewed, accepted, and endorsed by the National Council of Professors of Educational Administration (NCPEA) as a significant contribution to the scholarship and practice of education administration. Formatted and edited in Connexions by Theodore Creighton and Brad Bizzell, Virginia Tech, Janet Tareilo, Stephen F. Austin State University, and Thomas Kersten, Roosevelt University.

10.1

This chapter is part of a larger Collection (Book) and is available at: Calculating Basic Statistical Procedures in SPSS: A Self-Help and Practical Guide to Preparing Theses, Dissertations, and Manuscripts

NOTE: Slate and LeBouef have written a "companion book" which is available at: Preparing and Presenting Your Statistical Findings: Model Write Ups

Authors Information

John R. Slate is a Professor at Sam Houston State University where he teaches Basic and Advanced Statistics courses, as well as professional writing, to doctoral students in Educational Leadership and Counseling. His research interests lie in the use of educational databases, both state and national, to reform school practices. To date, he has chaired and/or served over 100 doctoral student dissertation committees. Recently, Dr. Slate created a website Writing and Statistical Help to assist students and faculty with both statistical assistance and in editing/writing their dissertations/theses and manuscripts.

1This content is available online at <http://cnx.org/content/m37335/1.6/>.
2http://my.qoop.com/store/NCPEA-Publications-1781472103076212/
3http://my.qoop.com/store/NCPEA-Publications-1781472103076212/
4http://www.writingandstatisticalhelp.com
Ana Rojas-LeBouef is a Literacy Specialist at the Reading Center at Sam Houston State University where she teaches developmental reading courses. She recently completed her doctoral degree in Reading, where she conducted a 16-year analysis of Texas statewide data regarding the achievement gap. Her research interests lie in examining the inequities in achievement among ethnic groups. Dr. Rojas-LeBouef also assists students and faculty in their writing and statistical needs on the website Writing and Statistical Help.5

Editors Information

Theodore B. Creighton, is a Professor at Virginia Tech and the Publications Director for NCPEA Publications6, the Founding Editor of Education Leadership Review,7 and the Senior Editor of the NCPEA Connexions Project.

Brad E. Bizzell, is a recent graduate of the Virginia Tech Doctoral Program in Educational Leadership and Policy Studies, and is a School Improvement Coordinator for the Virginia Tech Training and Technical Assistance Center. In addition, Dr. Bizzell serves as an Assistant Editor of the NCPEA Connexions Project in charge of technical formatting and design.

Janet Tareilo, is a Professor at Stephen F. Austin State University and serves as the Assistant Director of NCPEA Publications. Dr. Tareilo also serves as an Assistant Editor of the NCPEA Connexions Project and as an editor and reviewer for several national and international journals in educational leadership.

Thomas Kersten is a Professor at Roosevelt University in Chicago. Dr. Kersten is widely published and an experienced editor and is the author of Taking the Mystery Out of Illinois School Finance8, a Connexions Print on Demand publication. He is also serving as Editor in Residence for this book by Slate and LeBouef.

10.2 Nonparametric One-Way Analysis of Variance

In this set of steps, readers will calculate either a parametric or a nonparametric statistical analysis, depending on whether the data for the dependent variable reflect a normal distribution. A parametric statistical procedure requires that its data be reflective of a normal curve whereas no such assumption is made in the use of a nonparametric procedure. Of the two types of statistical analyses, the parametric procedure is the more powerful one in ascertaining whether or not a statistically significant difference, in this case, exists. As such, parametric procedures are preferred over nonparametric procedures. When data are not normally distributed, however, parametric analyses may provide misleading and inaccurate results. According, nonparametric analyses should be used in cases where data are not reflective of a normal curve. In this set of steps, readers are provided with information on how to make the determination of normally or nonnormally distributed data. For detailed information regarding the assumptions underlying parametric and nonparametric procedures, readers are referred to the Hyperstats Online Statistics Textbook at http://davidmlane.com/hyperstat/ or to the Electronic Statistics Textbook (2011) at http://www.statsoft.com/textbook/

For this nonparametric analysis of variance procedure to be appropriately used, at least half of the standardized skewness coefficients and the standardized kurtosis coefficients must be outside the normal range (+/-3, Onwuegbuzie & Daniel, 2002). Research questions for which nonparametric analysis of variance procedures are appropriate involve asking for differences in a dependent variable by group membership (i.e., more than two groups may be present). The research question, “What is the difference in science performance among middle school students as a function of ethnic membership?9” could be answered through use of a nonparametric analysis of variance procedure.

5http://www.writingandstatisticalhelp.com
6http://www.ncpeapublications.org
7http://ncpeapublications.org/about-dr.html
8http://cnx.org/content/col10606/latest/
9http://www.nvpcapublications.org/
10.2.1 Step One:

√ Split your file on the basis on your independent variable/fixed factor/grouping variable

After you do this, your screen should resemble the following:

![Image](http://cnx.org/content/m37335/latest/figure9.1.png/image)
Your screen will show that all cases are going to be analyzed and a “do not create groups”. You will need to click the compare groups and move the dependent variable over to the “Group Based on”.

10http://cnx.org/content/m37335/latest/figure9.2.png/image
* Click OK

√ Analyze
* Descriptive Statistics
* Frequencies

https://cnx.org/content/m37335/latest/figure9.3.png/image
CHAPTER 10. CONDUCTING A NONPARAMETRIC ONE-WAY ANALYSIS OF VARIANCE

Move over the dependent (outcome) variable

http://cnx.org/content/m37335/latest/figure9.4.PNG/image
√ Click on Statistics
Your screen will look like this.

http://cnx.org/content/m37335/latest/outcome.PNG/image
CHAPTER 10. CONDUCTING A NONPARAMETRIC ONE-WAY ANALYSIS OF VARIANCE

* Skewness [Note. Skewness refers to the extent to which the data are normally distributed around the mean. Skewed data involve having either mostly high scores with a few low ones or having mostly low scores with a few high ones.] Readers are referred to the following sources for a more detailed definition of skewness: http://www.statistics.com/index.php?page=glossary&term_id=356 and http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics

To standardize the skewness value so that its value can be constant across datasets and across studies, the following calculation must be made: Take the skewness value from the SPSS output and divide it by the Std. error of skewness. If the resulting calculation is within -3 to +3, then the skewness of the dataset is within the range of normality (Onwuegbuzie & Daniel, 2002). If the resulting calculation is outside of this +/-3 range, the dataset is not normally distributed.

* Kurtosis [Note. Kurtosis also refers to the extent to which the data are normally distributed around the mean. This time, the data are piled up higher than normal around the mean or piled up higher than normal at the ends of the distribution.] Readers are referred to the following sources for a more detailed definition of kurtosis: http://www.statistics.com/index.php?page=glossary&term_id=326 and http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics

To standardize the kurtosis value so that its value can be constant across datasets and across studies, the following calculation must be made: Take the kurtosis value from the SPSS output and divide it by the Std. error of kurtosis. If the resulting calculation is within -3 to +3, then the kurtosis of the dataset is within the range of normality (Onwuegbuzie & Daniel, 2002). If the resulting calculation is outside of this +/-3 range, the dataset is not normally distributed.

* Continue

* OK

14http://cnx.org/content/m37335/latest/figure9.6.PNG/image
Note: Before you continue to another application you must "UN_SPLIT" the files before moving on to other steps:

√ Data
√ Split Files
√ Analyze all cases, do not create groups
√ OK

Check for Skewness and Kurtosis values falling within/without the parameters of normality (-3 to +3). Note that each variable below has its own skewness value and its own kurtosis value. Thus, a total of three standardized skewness coefficients and three standardized kurtosis coefficients can be calculated from information in the table below.

15 http://cnx.org/content/m37335/latest/figure9.7.png/image
Skewness and Kurtosis Coefficients

<table>
<thead>
<tr>
<th></th>
<th>CH005TC09R</th>
<th>CL005TC09R</th>
<th>CW005TC09R</th>
</tr>
</thead>
<tbody>
<tr>
<td>N Valid</td>
<td>3125</td>
<td>1805</td>
<td>1877</td>
</tr>
<tr>
<td>Missing</td>
<td>5197</td>
<td>6517</td>
<td>6445</td>
</tr>
<tr>
<td>Skewness</td>
<td>-1.129</td>
<td>-0.479</td>
<td>-2.197</td>
</tr>
<tr>
<td>Std. Error of Skewness</td>
<td>0.044</td>
<td>0.058</td>
<td>0.056</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>1.818</td>
<td>-0.412</td>
<td>6.991</td>
</tr>
<tr>
<td>Std. Error of Kurtosis</td>
<td>0.008</td>
<td>0.115</td>
<td>0.113</td>
</tr>
</tbody>
</table>

Table 10.1

Copy skewness and kurtosis information into the skewness and kurtosis calculator
10.2.2 Step Two:

Compute Descriptive Statistics on the Dependent Variable
* Do so via the ANOVA procedure.
* Note. Do not use the ANOVA statistical significance information provided in the output. Use only the Ms, SDs, and ns.
* The screen shot will occur in the next step (Mean and standard deviation)

10.2.3 Step Three:

Run Nonparametric One-Way ANOVA on Data
* Analyze
* Nonparametric Tests

http://cnx.org/content/m37335/latest/calc.png/image
CHAPTER 10. CONDUCTING A NONPARAMETRIC ONE-WAY ANALYSIS OF VARIANCE

* k Independent Samples

* Keep the default of Kruskal-Wallis H checked

17 http://cnx.org/content/m37335/latest/figure9.8.png/image
* Test Variable would be your Dependent Variable (e.g., test scores)

* Grouping Variable would be your Independent Variable (categories)

* Define Groups

* Insert the number for your lowest numbered group and then the number for your highest numbered group.

143

143

18

* http://cnx.org/content/m37335/latest/figure9.10PNG/image
CHAPTER 10. CONDUCTING A NONPARAMETRIC ONE-WAY ANALYSIS OF VARIANCE

Note: Click on view than value labels to find the code for each group.
* Continue

** To obtain the Means and Standard Deviation:
* Click on options
* Highlight Descriptive
* Click Continue

http://cnx.org/content/m37335/latest/figure9.9.PNG/image
10.2.4 Step Four:

Check for Statistical Significance

Numerical sentence is written as: $X^2 = 430.66, p < .001$

Test Statisticsa,b

<table>
<thead>
<tr>
<th>Test Variable</th>
<th>Performance IQ (Wechsler Performance Intelligence 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Square</td>
<td>430.661</td>
</tr>
<tr>
<td>df</td>
<td>1</td>
</tr>
<tr>
<td>Asymp. Sig.</td>
<td>.000</td>
</tr>
</tbody>
</table>

Table 10.2

a. Kruskal Wallis Test
b. Grouping Variable: Disability Group Membership

10.2.5 Step Five:

If you have a statistically significant finding in your nonparametric ANOVA, you need to run the appropriate nonparametric post-hocs. Refer to your steps on running the nonparametric independent samples t-test.

20http://cnx.org/content/m37335/latest/figure9.11.png/image
10.2.6 Step Six:

Calculate Nonparametric Independent Samples t-test on Data

√ Analyze
√ Nonparametric Tests
√ 2 Independent Samples
√ Test Variable would be your Dependent Variable (e.g., test scores)
√ Grouping Variable would be your dichotomous Independent Variable
√ Define Groups
√ Group One is No. 1 and Group Two is No. 2 (or whatever numbers you used to identify each group)
Note: Click on view then value labels to find the code for each group
√ Continue
√ OK
Note. The above procedure is repeated for each pairwise comparison. Thus, if you have three groups, you would have three calculations. Correct for inflated error by using the Bonferroni method of adjustment.
Take the number of pairwise comparisons you are calculating and divide .05 by that.

Check for Statistical Significance
1. Go to the Test Statistics Box and look at the cell in the bottom right column to check for statistical significance.
If you have any value less than .05 then you have statistical significance. Remember to replace the third zero with a 1, if the value is .000 (i.e., for a sig value of .000, thus it would read .001).

Test Statisticsa

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>Performance IQ (Wechsler Performance Intelligence 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>6765.500</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>44166.500</td>
</tr>
<tr>
<td>Z</td>
<td>-20.752</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.000</td>
</tr>
</tbody>
</table>

Table 10.3

a. Grouping Variable: Disability Group Membership

To determine how to report the results of these nonparametric followup procedures, see the chapter on nonparametric independent samples t-test in this book.

10.3 Writing Up Your Nonparametric ANOVA

So, how do you "write up" your Research Questions and your Results? Schuler W. Huck (2000) in his seminal book entitled, Reading Statistics and Research, points to the importance of your audience understanding and making sense of your research in written form. Huck further states:

10.3.1

This book is designed to help people decipher what researchers are trying to communicate in the written or oral summaries of their investigations. Here, the goal is simply to distill meaning from the words, symbols, tables, and figures included in the research report. To be competent in this arena, one must not only be
able to decipher what’s presented but also to "fill in the holes"; this is the case because researchers typically assume that those receiving the research report are familiar with unmentioned details of the research process and statistical treatment of data.

A Note from the Editors
Researchers and Professors John Slate and Ana Rojas-LeBouef understand this critical issue, so often neglected or not addressed by other authors and researchers. They point to the importance of doctoral students "writing up their statistics" in a way that others can understand your reporting and as importantly, interpret the meaning of your significant findings and implications for the preparation and practice of educational leadership. Slate and LeBouef provide you with a model for "writing up your Nonparametric ANOVA statistics."

Click here to view: Writing Up Your Nonparametric ANOVA Statistics

10.4 References
Chapter 11

Standardized Skewness and Standardized Kurtosis Coefficient Calculator

11.1 Skewness and Kurtosis Calculator

Do not try to OPEN the file from here. DOWNLOAD the Excel file to your desktop, where you can use the Calculator to create your Skewness and Kurtosis coefficients.

Click here to download the Skewness and Kurtosis Excel file to your desktop.¹

¹This content is available online at <http://cnx.org/content/m37347/1.3/>.

²See the file at <http://cnx.org/content/m37347/latest/Standardized_Skewness_and_Standardized_Kurtosis_Coefficient_Calculator.xls>
Chapter 12

Resources: Calculating Basic Statistics in SPSS

This chapter is part of a larger Collection (Book) and is available at: Calculating Basic Statistical Procedures in SPSS: A Self-Help and Practical Guide to Preparing Theses, Dissertations, and Manuscripts

NOTE: Slate and LeBouef have written a "companion book" which is available at: Preparing and Presenting Your Statistical Findings: Model Write Ups

NOTE: These Recommended Resources have been peer-reviewed, accepted, and endorsed by the National Council of Professors of Educational Administration (NCPEA) as a significant contribution to the scholarship and practice of education administration. Formatted and edited in Connexions by Theodore Creighton and Brad Bizzell, Virginia Tech, Janet Tareilo, Stephen F. Austin State University, and Thomas Kersten, Roosevelt University.

12.1 Recommended Resources

1This content is available online at <http://cnx.org/content/m37336/1.3/>.
2http://my.qoop.com/store/NCPEA-Publications-1781472163076212/
3http://my.qoop.com/store/NCPEA-Publications-1781472163076212/
4http://davidmlane.com/hyperstat/
6http://www.statsoft.com/textbook/basic-statistics/#Descriptive%20statistics

Attributions

Edited by: John R. Slate, Ana Rojas-LeBouef
URL: http://cnx.org/content/col11292/1.6/
License: http://creativecommons.org/licenses/by/3.0/

Module: "Introduction: Why a Book on Statistical Help for Graduate Students and Faculty?"
By: John R. Slate, Ana Rojas-LeBouef
URL: http://cnx.org/content/m37280/1.2/
Pages: 1-3
Copyright: John R. Slate, Ana Rojas-LeBouef
License: http://creativecommons.org/licenses/by/3.0/

Module: "Calculating Descriptive Statistics"
By: John R. Slate, Ana Rojas-LeBouef
URL: http://cnx.org/content/m37276/1.9/
Pages: 5-24
Copyright: John R. Slate, Ana Rojas-LeBouef
License: http://creativecommons.org/licenses/by/3.0/

Module: "Calculating a Nonparametric Pearson Chi-Square"
By: John R. Slate, Ana Rojas-LeBouef
URL: http://cnx.org/content/m37277/1.5/
Pages: 25-34
Copyright: John R. Slate, Ana Rojas-LeBouef
License: http://creativecommons.org/licenses/by/3.0/

Module: "Calculating Correlations: Parametric and Non Parametric"
By: John R. Slate, Ana Rojas-LeBouef
URL: http://cnx.org/content/m37278/1.7/
Pages: 35-53
Copyright: John R. Slate, Ana Rojas-LeBouef
License: http://creativecommons.org/licenses/by/3.0/

Module: "Conducting a Parametric Independent Samples t-test"
By: John R. Slate, Ana Rojas-LeBouef
URL: http://cnx.org/content/m37279/1.5/
Pages: 55-69
Copyright: John R. Slate, Ana Rojas-LeBouef
License: http://creativecommons.org/licenses/by/3.0/

Module: "Conducting a Parametric Dependent Samples t-test (Paired Samples t-test)"
By: John R. Slate, Ana Rojas-LeBouef
URL: http://cnx.org/content/m37328/1.6/
Pages: 71-83
Copyright: John R. Slate, Ana Rojas-LeBouef
License: http://creativecommons.org/licenses/by/3.0/
Module: "Conducting a Nonparametric Independent Samples t-test"
By: John R. Slate, Ana Rojas-LeBouef
URL: http://cnx.org/content/m37330/1.6/
Pages: 85-99
Copyright: John R. Slate, Ana Rojas-LeBouef
License: http://creativecommons.org/licenses/by/3.0/

Module: "Conducting a Nonparametric Paired Samples t-test"
By: John R. Slate, Ana Rojas-LeBouef
URL: http://cnx.org/content/m37333/1.5/
Pages: 101-111
Copyright: John R. Slate, Ana Rojas-LeBouef
License: http://creativecommons.org/licenses/by/3.0/

Module: "Conducting a Parametric One-Way Analysis of Variance"
By: John R. Slate, Ana Rojas-LeBouef
URL: http://cnx.org/content/m37334/1.4/
Pages: 113-129
Copyright: John R. Slate, Ana Rojas-LeBouef
License: http://creativecommons.org/licenses/by/3.0/

Module: "Conducting a Nonparametric One-Way Analysis of Variance"
By: John R. Slate, Ana Rojas-LeBouef
URL: http://cnx.org/content/m37335/1.6/
Pages: 131-147
Copyright: John R. Slate, Ana Rojas-LeBouef
License: http://creativecommons.org/licenses/by/3.0/

Module: "Standardized Skewness and Standardized Kurtosis Coefficient Calculator"
By: John R. Slate, Ana Rojas-LeBouef
URL: http://cnx.org/content/m37347/1.3/
Page: 149
Copyright: John R. Slate, Ana Rojas-LeBouef
License: http://creativecommons.org/licenses/by/3.0/

Module: "Resources: Calculating Basic Statistics in SPSS"
By: John R. Slate, Ana Rojas-LeBouef
URL: http://cnx.org/content/m37336/1.3/
Pages: 151-152
Copyright: John R. Slate, Ana Rojas-LeBouef
License: http://creativecommons.org/licenses/by/3.0/
Calculating Basic Statistical Procedures in SPSS: A Self-Help and Practical Guide to Preparing Theses, Dissertations, and Manuscripts

Calculating Basic Statistical Procedures in SPSS: A Self-Help and Practical Guide to Preparing Theses, Dissertations, and Manuscripts, is authored by John R. Slate and Ana Rojas-LeBouef from Sam Houston State University. This book is written to assist graduate students and faculty members, as well as undergraduate students, in their use of the Statistical Package of the Social Sciences-PC (SPSS-PC) versions 15-19. Specifically, we have generated a set of steps and screenshots to depict each important step in conducting basic statistical analyses. We believe that this book supplements existing statistical texts in which readers are informed about the statistical underpinnings of basic statistical procedures and in which definitions of terms are provided. Accordingly, other than providing a few basic definitions, we assume that dissertation chairs/thesis directors, students, and/or faculty will obtain their own definition of terms. We hope you find this set of steps and screenshots to be helpful as you use SPSS-PC in conducting basic statistical analyses.

About Connexions

Since 1999, Connexions has been pioneering a global system where anyone can create course materials and make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and learning environment open to anyone interested in education, including students, teachers, professors and lifelong learners. We connect ideas and facilitate educational communities.

Connexions’s modular, interactive courses are in use worldwide by universities, community colleges, K-12 schools, distance learners, and lifelong learners. Connexions materials are in many languages, including English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part of an exciting new information distribution system that allows for Print on Demand Books. Connexions has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.